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Abstract: Tissue scarring upon cerebral ischemia entails a cascade of multifaceted 
cellular and molecular mechanisms that govern the remodeling of the neurovas-
cular unit, which integrates neuronal, glial, and vascular functions. The process 
encompasses inflammation, Glial and vascular reactivity, and neuronal remodel-
ing. In this chapter we cover three major aspects involved in tissue scarring after 
cerebral ischemia. First, we outline the primary cellular mechanisms underlying 
glial scar formation, emphasizing on the interactions between astrocytes, microg-
lia, and mural cells, including pericytes and fibroblasts at the injury core and 
perilesional areas. Next, we address the key routes of extracellular matrix deposi-
tion by reactive and fibrogenic cells, including proteoglycans, tenascins, fibronec-
tin, and collagen. Finally, we discuss the promises and challenges of manipulating 
tissue scarring as a strategy to promote brain structural remodeling and neurologi-
cal recovery.
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INTRODUCTION

Neuroglial response to injury was initially reported in 1927 by Pío del Río Hortega 
and Wilder Penfield in the founding article “Cerebral cicatrix: the reaction of neuro-
glia and microglia to brain wounds” (1). Those detailed observations were the 
groundwork for elucidating the pathophysiology of central nervous system (CNS) 
response to injury, as well as the complex mechanisms involved in tissue healing 
and replacement. From then on, experimental evidence compiled from several 
CNS diseases (2), including traumatic brain injury (TBI) (3), spinal cord injury 
(SCI) (4), and cerebral ischemia (5) denotes the importance of neuroglial reactiv-
ity in the pathobiology of CNS injuries.

Cerebral ischemia is a multifaceted injury comprising three different phases: 
(i) cell death and neuroinflammation, (ii) tissue replacement, and (iii) tissue 
remodeling (6). Diverse experimental models, including middle cerebral artery 
occlusion (MCAo), photothrombosis, and craniectomy with direct vessel occlu-
sion indicate that neuroglial response takes place through all stroke phases and 
broadly determines its evolution and the prospects of neurological recovery (7). 
One of the pivotal consequences of glial reactivity is acute and chronic tissue 
 scarring (6) that comprises the functional reorganization of several components of 
the neurovascular unit (NVU), including endothelial cells, pericytes (8, 9), poly-
dendrocytes/ neural/glial antigen (NG)2+ (10), astrocytes (11), and microglia (12). 
This cell arrangement known as the glial scar is accompanied by a vast deposition 
of glial and neuronal-derived extracellular matrix (ECM) proteins that constitute 
a molecular compartment, namely the fibrotic scar (13). Shortly after the injury, 
these ECM substrates influence neuroinflammation, glial reactivity, and neuronal 
survival (14), and participate in debris removal and tissue regeneration in later 
stages (15). 

Notably, the contribution of vascular cells, namely endothelial and mural cells, 
to tissue scarring has been recognized in recent years (9). Current perspectives in 
the field of CNS injuries emphasize that platelet-derived growth factor receptor 
(PDGFR)β+ mural cells are essential to regulate the proliferation, fate, migration, 
and metabolism of glial scar-forming cells (16–18). In addition, the proliferation 
and migration of PDGFRβ+/fibroblast-like cells are associated with the presence of 
specific ECM proteins in the fibrotic scar, which provides the tissue peculiar prop-
erties to favor structural remodeling (19, 20). In this chapter, we highlight the key 
regulatory mechanisms underlying the structuring of glial and fibrotic scars in the 
context of cerebral ischemia and discuss the promises and challenges of scarring 
manipulation to facilitate recovery.

PERICYTES AS GLIAL ACTIVATORS AND SCAR-FORMING 
CELLS

Even though microglia have long been considered the first responders to CNS 
injury and modulators of the innate immune responses (21,22), emergent evi-
dence suggests that PDGFRβ+ mural cells, which comprise pericytes, constitute 
the initial inflammatory mediators that prime acute glial activation (23). PDGFRβ+ 
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cells are a heterogeneous population of perivascular cells embedded within the 
basement membrane (BM) of arterioles/capillaries (Figure 1) that closely commu-
nicate with endothelial cells and astrocytes to regulate diverse vascular functions, 
including blood-brain barrier (BBB) permeability, vascular stability, inflammation, 
angiogenesis and neurogenesis (24, 25). 

Multiple experimental studies indicate that PDGFRβ+ mural cells are highly 
reactive to inflammatory signals/alarmins derived by dysfunctional cells result-
ing from ischemia. Their response repertoire includes the modulation of toll-
like receptor (TLR)4 (26) and nuclear factor kappa B (NF-κB) (27) pathways, 
PDGF-B/PDGFRβ pathway, transforming growth factor (TGF)-β1/TGF-βR2 
pathway (28), activin receptor-like kinase (ALK)5/SMAD-2/3 pathway, and 
integrin-αv complexes (28,29) (Figure 2). The activation of PDGFRβ+ cells trig-
gers a first wave of inflammatory signals that prime neuroglial response (30–
32). Specifically, single-cell RNA sequencing (RNA-seq) and in situ hybridization 
(ISH) studies have demonstrated that PDGFRβ+ mural cells are the primary 

Figure 1. Multicellular reactivity and glial scar formation. A, In the healthy brain, 
PDGFRβ+ mural cells wrap the vasculature (green) to regulate neurovascular functions. 
Following ischemia, reactive PDGFRβ+ pericytes detach from the vascular wall and migrate 
towards the brain parenchyma to adopt fibrogenic properties (×63). B, Microglia are highly 
ramified cells that react to ischemic insult by upregulating proteins like Iba1 and CD45, while 
adopting amoeboid morphologies, and populating the injury core as integral building blocks 
of the glial scar (×63). C, Reactive astrocytes are featured by prominent upregulation of GFAP 
and prominent cell hypertrophy (×63). D, Following ischemia, reactive astrocytes invade the 
injury core, where no NeuN+ (healthy) cells are present (×10). E, The cell barrier separates 
the perilesional tissue to prevent the infiltration of inflammatory signaling to the healthy 
tissue comprising vulnerable cells that could recover (×20). F, This cell alignment is 
accompanied by a molecular barrier of fibrotic scar-forming cells as TnC that exerts 
immunoregulatory and healing roles (×20).
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sources of CC-chemokine ligand (CCL)-2, also known as monocyte chemotactic 
protein (MCP)-1 (33), a well-known alarmin that influences the immune 
response and glial reactivity shortly after injury (33–35). Additional evidence 
donates that mural cells are relevant sources of nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase (NOX)-4, a molecule tightly linked to the 
generation of reactive oxygen species (ROS) by microglia, which act as a potent 
inflammation amplifier (36). 

By this means, the initial stimulation of PDGFRβ+ cells prompt the secretion of 
additional pro-inflammatory cytokines by various cellular components of the 
NVU, namely interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-3, IL-9, 
IL1-3, IL-6, and chemokines, such as CCL-3, CCL-4, CCL-5, MCP-1, and the 
macrophage inflammatory protein (MIP)-1 (30–32). Collectively, these substrates 
shape long-standing inflammatory loops that are decisive for the recruitment of 

Figure 2. Cellular and molecular pathways implicated in glial scar formation. A, Brain injury 
upon ischemia leads to blood-brain barrier breakdown and neuroinflammation. B, Mural 
cells, including pericytes, are among the first cells at the neurovascular unit to respond to 
injury by secreting diverse inflammatory mediators that trigger glial activation and leukocyte 
recruitment. C, Microglia respond to pericyte-derived cytokines and damaged cells by 
adopting an amoeboid morphology to facilitate migration and phagocytosis, and by releasing 
a second wave of inflammatory cytokines that sustain the inflammatory loop and initiate 
astrocyte reactivity. D, Astrogliosis, or astrocyte activation, entails the upregulation of 
glutamate receptors to modulate neuronal excitotoxicity and the deposition of numerous 
ECM proteins that establish the structure the fibrotic scar. E, Following the initial responses, 
numerous cells at the neurovascular unit, including PDGFRβ+ pericytes, microglia, and 
astrocytes proliferate in situ or in the neurogenic zones, and migrate towards the injury core 
to form the glial scar. F, The glial scar is a stratified arrangement of neuroglia and fibrotic cells 
that separate the damaged from healthy tissue. This structure relies on the metabolic 
support offered by endothelial/pericyte-driven revascularization.
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peripheral leukocytes and the formation of the glial scar by reactive neuroglia and 
fibroblast-like cells in the injury site.

Apart from the secretion of inflammatory signals, reactivity of PDGFRβ+ cells 
also involves the upregulation of specific mural/fibrosis markers, including 
PDGFRβ (Figure 1), desmin, NG2 (37), collagen type I alpha 1 chain (COL1-α1), 
and the regulator of G-protein signaling (RGS)5 (33) that are associated with 
cell proliferation, migration, and secretion of scar-forming proteins (37–39). 
Some of these markers have been identified as crucial players in the context of 
ischemic lesions. More precisely, PDGFRβ has been associated with neuropro-
tective effects (decreased infarct size/edema) in acute and chronic phases 
 following ischemia, as well as enhanced cell proliferation, angiogenesis, and 
deposition of scar-forming molecules like fibronectin and collagen (40–42). 
Besides, the upregulation of RGS5 facilitates cell detachment from the vascular 
wall and the subsequent migration of mural cells towards the ischemic core 
(Figure 2). Interestingly, in contrast to PDGFRβ-deficient mice, RGS5-deficient 
animals exhibit enhanced vascular density, mural cell coverage, and tight 
 junction (TJ) integrity (43, 44), denoting that mural cell migration provokes a 
contextualized weakening of vascular function in lesioned regions and favors 
tissue scarring. 

Experimental evidence suggests that while a group of PDGFRβ+/NG2+ mural 
cells remains at the lesion borders (45), other migrating PDGFRβ+/glial high- 
affinity glutamate transporter (GLAST)+ cells (type A pericytes) give rise to scar-
forming fibroblast-like cells that become a key source of collagen, laminin, 
fibronectin, and neurocan in the lesion core (19, 20, 46–48). Deposition of these 
proteins is highly dependent on TGF-β1 (49, 50) and Wnt/β-catenin pathways 
(47) (Figure 3), impacting tissue elasticity and stiffness, and thus influencing key 
pathophysiological cascades such as glial reactivity (51, 52), cell differentiation 
(53), and neurite outgrowth (54, 55). Notably, evidence from cerebral ischemia 
has revealed that reactive PDGFRβ+/fibroblast-like cells influence astrocyte reac-
tivity in perilesional regions and promote oligodendrocyte precursor cells (OPC) 
differentiation to favor post-stroke myelination (40).

Furthermore, the response of PDGFRβ+ mural cells to cerebral ischemia is also 
associated with revascularization of the injured area, which is required for the 
migration of newborn neurons (56) or the proper organization of the glial scar 
(9, 17, 57) (Figure 2). The evidence indicates that this process occurs due to the 
interchange of mural and endothelial cells through TGF-β and the TGFβ-R2/
ALK5-SMAD-2/3 signaling pathway (58), or by connexin-43, N-cadherin, and 
prostaglandin E2 (EP1/4) receptors (59, 60) that facilitate the structuring of new 
blood vessels and an adequate BM production, including fibronectin, laminin, 
and collagen IV (61).

Collectively, the previous reports offer substantial grounds to consider 
PDGFRβ+ mural cells as important responders to cerebral ischemia (62). First, 
they act as inflammatory amplifiers and demarcate the injured territory to mediate 
glial reactivity and the recruitment of resident and peripheral macrophages in the 
infarcted area. Next, they modulate tissue scarring by forming cell  networks 
implicated in the revascularization of the injured tissue and the deposition of 
fibrotic proteins in the infarct core.
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MICROGLIAL ACTIVATION AND INNATE IMMUNE 
RESPONSE

Microglial activation implicates neuroinflammatory signaling that broadly defines 
immune cell infiltration, glial response, and tissue repair (63). Microglia reactivity 
is triggered promptly after ischemia by numerous mechanisms, such as BBB dis-
ruption, neuronal hyperactivity/excitotoxicity, and inflammatory mediators 
secreted by various cells, including reactive PDGFRβ+ mural cells (64, 65). These 
substrates bind to TLR, advanced glycation end products (RAGE), or P2Y12 
receptors to sustain numerous neuroinflammatory loops (65–67), evidenced by 
the expression of hypoxia-inducible factor (HIF)-1α and microglial activation 
markers, such as ionized calcium-binding adapter molecule (Iba-1), CD45, CD68, 
CD206, MCP-1, and the neurotrophic factor insulin-like growth factor (IGF)-1 

Figure 3. Fibrotic scar deposition by reactive neurovascular unit cells. Glial scar formation 
entails the deposition of fibrotic molecules at the injury core to prevent the infiltration of 
peripheral leukocytes and inflammatory signaling into the healthy tissue. A, Mural PDGFRβ+ 
cells give rise to scar-forming fibroblasts that migrate to the injury core and become a major 
source of fibrotic molecules. B, At the injury site, microglia respond to multiple signaling, 
including TGF-β and TnC to modulate the recruitment of peripheral immune cells and 
astrocyte activation. C, In turn, reactive astrocytes constitute the primary reservoirs of 
scar-forming TnC as well as CSPGs, which exert immunoregulatory roles and facilitate tissue 
replacement. Due to its high ligand capacity, TnC allows determining the action of distinct 
ECM molecules at the fibrotic scar. D, The abundant deposition of fibrotic proteins, 
including collagen, laminin, and fibronectin by fibroblast-like cells deriving from PDGFRβ+ 
cells that invade the lesion core, determines tissue elasticity and stiffness, and thus control 
neuronal plasticity inhibition or promotion balance.
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(68–70) (Figure 1). This microglial response is followed by the secretion of pro-
inflammatory cytokines, including TNF-α, IL-1β, IL-6, NO, ROS (71–73) that 
jointly amplify the neuroinflammatory signals initiated by pericytes and fosters 
the recruitment of peripheral immune cells that exacerbate glial reactivity 
(Figure 3). Furthermore, microglial activation after ischemia involves morpho-
logical changes from highly ramified towards amoeboid-shaped cells (68,74) that 
facilitate cell migration (75) and phagocytosis in the injury core (76) (Figure 1). 
Transcriptomic analyses of “resting” and “active” microglia have revealed that 
 ramified cells express low levels of cytokines and chemokines, as well as genes 
related to neuronal maturation and synaptic integrity. In contrast, amoeboid 
cells exhibit prominent transcription factors involved in migration, prolifera-
tion, and differentiation, such as SRY (sex determining region Y)-box 4 (SOX4), 
SOX11, and Runt-related transcription factor 1 (RUNX1) partner transcriptional 
co-repressor 1 (Runx1t1) (77). 

In experimental models of SCI, reactive microglia are essential components of 
the glial scar (12) and are involved in a bi-directional interaction with neighboring 
reactive astrocytes (78, 79). On the one hand, it has been found that microglial-
derived TNF-α, IL-1α, complement (C)1q, and IL-6 cytokines determinedly 
shape the astrocytic pro-inflammatory profile via TLR4 and RAGE receptors 
(80–82) (Figure 2). Likewise, whole-genome expression profiling of cultured 
astrocytes has revealed that exposition to inflammatory mediators secreted by 
microglia like TGF-β1 and IFN-γ alters the transcriptional pathways of G-protein-
coupled receptors (GPCRs) associated with cell injury and proliferation, such as 
P2RY1, CXCR4, and adrenoceptor alpha (ADRA)2A (83). On the other hand, the 
evidence suggests that reactive astrocytes can modulate microglial activation, 
 proliferation, and migration by different pathways, including inflammatory 
 mediators such as IFN-γ, ATP, nitric oxide (NO), IL-6, IL-1β, and IL-1ra (81, 84, 
85), or by the secretion of ECM proteins like fibronectin/β1 integrin pathway (86) 
or tenascin-c (TnC) (87, 88) (Figure 2). Conversely, astrocyte-derived TGF-β 
inhibits microglial response to lipopolysaccharide (LPS) and IFN-γ and reduces 
the subsequent secretion of inflammatory  mediators (89).

Findings from cerebral ischemia models indicate that CX3C chemokine recep-
tor (CX3CR)1+ or Iba-1+ microglia proliferate in the perilesional regions and accu-
mulate in the injury core during the first week after injury before the astrocytic 
barrier is formed (88, 90). Interestingly, the depletion of this reactive microglia 
leads to a disorganized astrocytic wall, exacerbated inflammation, and increased 
neuronal death (12,91), suggesting that microglial response effectively delineates 
the injured territory and guides the organization of astrocytes around the lesion. 
Overall, the overwhelming experimental evidence outlines the importance of 
astrocytes and microglia crosstalk in modulating the spatial properties of the glial 
scar following ischemia.

ASTROGLIOSIS AND GLIAL SCARRING

Astrocyte reactivity or astrogliosis takes place in all stroke phases (6,92) and is 
featured by the upregulation of glial fibrillary acid protein (GFAP) (Figure 1) and 
the abundant secretion of inflammatory and fibrotic scar-forming mediators, 
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including chondroitin sulfate proteoglycans (CSPGs) and TnC (93, 94) (Figure 4). 
During the tissue repair phase after cerebral ischemia, microglia-derived cyto-
kines prime local astrocyte proliferation (12) or in neurogenic niches depending 
on the distance to the infarcted area (95). Proliferating astrocytes migrate to the 
injury core displaying distinct organization patterns (96, 97) (Figure 1). In par-
ticular, astrocytes derived from radial glial progenitors cells (RGPCs) exhibit a 
strong astrogliosis profile with profound morphological alterations and form a 
highly dense barrier separating the infarcted and healthy tissue (11) (Figure 1). 
On the other hand, slow proliferating/NOTCH1+ astrocytes display mild astro-
gliosis profile and are recruited to the scar border, extending their processes 
towards the injury. Finally, a third group of non-proliferating astrocytes located in 
perilesional regions exhibit moderate astrogliosis features (95, 98). 

The activation and organization of astrocytes at the glial scar involve distinct 
signaling pathways. For instance, it has been reported that STAT3 regulates sev-
eral astrogliosis mechanisms, including astrocyte migration, GFAP expression, 
and cell hypertrophy. Consequently, deletion of STAT3 in astrocytes is translated 
into disrupted glial scar formation, accompanied by enhanced neuroinflamma-
tion and behavioral deficits (99, 100). Likewise, STAT3-mediated inhibition of 
RhoA is associated with proper astrocyte migration and adhesion at the scar 
(101). Evidence from in vitro experiments also suggests that this signaling path-
way is implicated in PDGFRβ+ cells and astrocyte communication, as the peri-
cyte-conditioned medium after PDGFB treatment promotes astrocyte proliferation 
and astrocyte-mediated OPC differentiation via STAT3 (42). Remarkably, addi-
tional evidence indicates that thrombospondin (THBS)4 expression induced by 
cerebral ischemia prompts the transcription of the nuclear factor I A (NFIA) in 
subventricular zone (SVZ) stem cells to promote astrogenesis. Therefore, THBS4-
deficient mice exhibit astrocyte deficiency and inappropriate scar formation 
(102). Remarkably, astrocyte reactivity following ischemia is also associated with 
endothelin-1 (ET-1)-meadited deposition of amyloid-β (Aβ) (103). Accretion of 
this protein is linked to diminished Aβ clearance by glial RAGE receptors and the 
progress of long-term cognitive deficits (104).

Of particular interest in the context of cerebral ischemia is TGF-β signaling. 
TGF-β is a multifunctional cytokine secreted by glia, pericytes, and endothelial 
cells, that is implicated in numerous processes during brain injury and remodel-
ing, including regulation of astrogliosis and fibrosis (105) (Figure 3). Specifically, 
findings from cerebral ischemia models indicate that TGF-β1 stimulation via 
ALK5 receptor or the intermediate-conductance calcium-activated potassium 
channel (KCa3.1) is required for GFAP upregulation, cell hypertrophy, and 
astrocyte arrangement at the scar, as well as CSPGs deposition (106, 107). 
Likewise, it has been reported that fibrinogen entering the parenchyma through 
the disrupted BBB stimulates astrogliosis via TGF-β/SMAD signaling pathway. 
Genetic or pharmacological inhibition of fibrinogen diminishes astrocyte activa-
tion and deposition of fibrotic scar-forming molecules like neurocan (108). 
Additionally, TGF-β1 or SMAD2/3 signaling has also been associated with the 
deposition of TnC, phosphacan, chondroitin synthase (ChSy)-1, 4-sulfated 
chondroitin-4-sulfotransferase-1 (C4st1) at the injury core (109, 110). 

The dynamics of fibrotic proteins turnover remain elusive. Human samples 
from injured spinal cord indicate that phosphacan is upregulated at the scar 
 border, while neurocan and versican are in the injury core (111). Interestingly, the 
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evidence suggests that CSPGs are differentially expressed and degraded upon 
injury (112), as neurocan, brevican, and versican are upregulated at the lesion 
core shortly after SCI, while phosphacan immunoreactivity appears two months 
after the lesion. Similarly, brevican expression persisted for two months in con-
trast to neurocan and versican that lasted for 30 days (111). In line with these 
observations, increased neurocan and phosphacan expression in GFAP+ reactive 
astrocytes was reported after one month at the injured area in a cortical injury 
model (113) (Figure 4). 

The role of TnC is particularly relevant in injury settings. TnC is abundantly 
secreted by reactive astrocytes (114, 115) dependently upon extracellular signal-
regulated kinases (ERK) and mitogen-activated protein kinase (MAPK) pathways 
(116) (Figure 4). Following ischemia, TnC remains in the lesion core during the 
first two weeks after injury (88) (Figure 4), and it is subsequently degraded by 
matrix metalloproteinases (MMPs), namely MMP2/9 (117). TnC possesses a 
 multicellular domain that provides an ample ligand capacity, thus enabling the 
synthesis of other ECM proteins (118) and controlling how long these proteins 
will be retained at the fibrotic scar (119). TnC interacts with ICAM1, fibronectin, 
and perineural nets (PNNs) components (120), or glial and leukocyte integrins, 
such as α9β1, αVβ3, α8β1, and αVβ6, as well as the collagen receptor α2β (118) 
(Figure 3). For instance, it has been reported that TnC-deficient mice exhibit 
fibronectin insufficiency following SCI or that TnC interaction with α9β1 and 
αVβ3 integrins control the fate and proliferation of cultured astrocytes or hema-
topoietic stem and progenitor cells (HSPCs) (118, 121). 

Furthermore, it has been also demonstrated that TnC exerts immunoregula-
tory roles following injury. Findings from cerebral ischemia suggest that 
 astrocyte-derived TnC binds to glial and leukocyte TLR4 and RAGE to regulate 

Figure 4. Tenascin-C and neurocan deposition at the fibrotic scar. A-B, TnC is one of the main 
ECM proteins deposited by reactive astrocytes after cerebral ischemia. Following injury, TnC 
is prominently upregulated in the injury core (striatum) and is degraded by MMPs (A, ×63; 
B, ×10). C-D, Neurocan is a CSPG secreted by astrocytes at the injury core, which tightly 
interacts with TnC and acts as an inhibitory cue for cell reorganization in specific contexts 
(C, ×63; D, ×10).
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microglial activation and immune cell infiltration in association with ICAM1 
expression (88). Likewise, TnC-deficient mice experience increased lymphocyte 
and neutrophil infiltration following SCI (122), and TnC-shRNA treatment 
reduces the production of inflammatory mediators (123). The previous implies 
that TnC is a signaling substrate for recruiting scar-forming cells and modulate 
their activation state.

Finally, it is important to note that reactive astrocytes do not solely promote 
pathophysiological cascades leading to tissue scarring, but also control neuronal 
excitotoxicity via the excitatory amino acid transporter (EAAT1/2) glutamate 
transporters (124) and are major sources of neurotrophic factors (125, 126), 
including brain-derived neurotrophic factor (BDNF), glial cell line-derived neuro-
trophic factor (GDNF), and nerve growth factor (NGF) (94, 127), that promote 
chronic brain remodeling (Figure 2).

MODULATION OF TISSUE SCARRING TO ENHANCE 
NEUROLOGICAL RECOVERY

The downsides and benefits of glial/fibrotic scar for structural brain remodeling 
and neurological recovery have been widely discussed during the last two decades 
(128). A long-standing hypothesis postulates that glial and fibrotic scars act as 
physical and molecular inhibitory cues for cellular reorganization following injury 
(106, 129, 130). In particular, it has been shown that increased CSPGs and TnC 
expression are correlated with diminished axonal rewiring (122, 131) and that 
ECM degradation by treatments like chondroitinase ABC improves neurological 
recovery by facilitating the regeneration of neurites after SCI (132, 133). In the 
same way, it has been reported that experimental inhibition of pericyte-derived 
scarring enhances neurological recovery by preserving tight junctions and reduc-
ing vascular leakage (44), and promoting axonal growth (134). 

Nonetheless, recent evidence is suggesting that the excessive experimental 
attenuation of tissue scarring diminishes functional recovery (131, 135). For 
instance, it has been demonstrated that glial/fibrotic scarring exerts neuroprotec-
tive roles by limiting the spread of inflammatory mediators into the intact tissue 
(136–138) and favoring tissue reorganization by ameliorating debris removal and 
activation of plasticity-related factors such as FGF and BDNF (139, 140). Notably, 
a study by Anderson et al. (141) in a model of SCI strongly implies that the glial 
scar aids, rather than prevents, tissue reorganization after CNS lesion. Indeed, 
depending on the context, scar-forming proteins like TnC and CSPGs may exert 
inhibitory effects (142) or behave plasticity substrates (109, 140, 143). 
Alternatively, approaches depleting key mediators of astrocyte reactivity such as 
GFAP, vimentin, and Yap exacerbated infarct size, neuroinflammation, ECM 
 deposition, and diminished neurological recovery (131, 135, 144). Interestingly, 
ablation of reactive astrocytes at the glial scar also impairs revascularization (145), 
which is required for proper metabolic sustenance of newly proliferated neurons 
and glia repopulating the lesioned site. 
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The previous reports entail that the effects of glial/fibrotic scars must be evalu-
ated by considering the disease models and context (146). While the cellular and 
molecular remodeling governing scarring at the injury site in the early phases 
could be beneficial by limiting neuroinflammation and excitotoxicity, degradation 
of ECM deposits in the chromic phase enables tissue plasticity. The promotion of 
neuroprotective astrocyte phenotypes through the use of biomaterials (147) or 
direct astrocyte reprogramming (148, 149), as well as the functional reprogram-
ming of PDGFRβ+ mural cells (150, 151) may be promising strategies to enhance 
matrix degradation or neuronal repopulation in chronic stages post-ischemia to 
favor the formation of new functional cell networks. 

CONCLUSION

Tissue scarring is one of the primary pathobiological processes that determine 
structural and functional reorganization of the injured CNS. It involves a tightly 
regulated spatiotemporal and multicompartmentalized reactivity of diverse cells 
that compose the NVU, including asrocytes, microglia, and mural PDGFRβ+ cells 
that comprise pericytes. The crosstalk between the different cellular and molecu-
lar elements within the scar exerts essential immunoregulatory functions that aim 
at limiting the infiltration of inflammatory cells and mediators into the healthy 
tissues. In this context, scar-forming cells communicate through cytokines and 
ECM proteins to promote proliferation, differentiation, and migration of cells to 
the lesion core, and ultimately orchestrate an orderly cellular and molecular bar-
rier that will be the basis for reorganization and replacement of the injured tissue. 
Neurological recovery after cerebral ischemia is strongly linked to the molecular 
properties of the central fibrotic scar, which determines to a large extent the 
inhibitory or promoting effects on neuronal plasticity. Because complete suppres-
sion of glial or fibrotic scar formation has been shown to have adverse effects, 
approaches seeking a time and context-dependent regulation of tissue scarring 
appear more promising, including strategies aiming to reprogram the functions of 
scar-forming cells.
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