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Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in
the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological
conditions in which the decline of cognitive functions, including executive functions,
is associated with structural and functional alterations in the cerebral vasculature.
Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease
(cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular
functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling
dysfunction, and inflammation. Accumulation of neurovascular impairments over time
underlies the cognitive function decline associated with VaD. Furthermore, several
vascular risk factors, such as hypertension, obesity, and diabetes have been shown to
exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly,
air pollution constitutes an underestimated risk factor that triggers vascular dysfunction
via inflammation and oxidative stress. The review summarizes the current knowledge
related to the pathological mechanisms linking neurovascular impairments associated
with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution,
to VaD etiology and progression. Furthermore, the review discusses the major challenges
to fully elucidate the pathobiology of VaD, as well as research directions to outline new
therapeutic interventions.

Keywords: vascular dementia (VaD), stroke, cerebral small vessel disease (cSVD), neurovascular abnormalities,
blood-brain barrier, neuroinflammation, air pollution

INTRODUCTION

Dementia affects nearly 50 million people worldwide, and the World Health Organization (WHO)
estimates that this number will triple by 2050 (Patterson, 2018). Dementia is a heterogeneous
neurodegenerative pathology that encompasses Alzheimer’s disease (AD), vascular dementia
(VaD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and Parkinson’s disease (PD).
Although the overall prevalence of dementia is higher in agingmen, its severity is more pronounced
in aging females, a disparity that might implicate sex hormones (Appelros et al., 2009; Podcasy and
Epperson, 2016; Poorthuis et al., 2017). VaD comes just after AD as a main cause of dementia,
accounting for approximately 15–20% of dementia cases in the Western countries and could reach
up to 30% in Asia and developing countries (Rizzi et al., 2014). Vascular deficiencies are now
considered relevant contributors to mixed dementia (MxD), which accounts for 25–35% of all
dementia cases (Jellinger, 2007; Rosa et al., 2020).
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The Vascular Impairment of Cognition Classification
Consensus Study (VICCCS) defines VaD as ‘‘clinically significant
deficits in at least one cognitive domain comprising sensation,
perception, motor skills and construction, attention and
concentration, memory, executive functioning, processing speed
and language/verbal speed, that are of sufficient severity to
cause severe disruption of activities of daily living’’ (Sachdev
et al., 2006; Andrianopoulos et al., 2017; Skrobot et al., 2018).
The cognitive functions are assessed through the Montreal
Cognitive Assessment Test which evaluates five cognitive
domains; executive function, attention, memory, language,
and visuospatial function (Pendlebury et al., 2012; Skrobot
et al., 2018; Iadecola et al., 2019). Diagnosis of VaD is
divided into two major research fields; cognitive tests and
neuroimaging. Indeed, the diagnosis does not rely only on
memory impairments, but it is supported by the presence of
diverse cognitive deficits accompanied by diagnostic imaging
evidencing cerebrovascular abnormalities such as brain atrophy,
white matter hyperintensities, infarcts, and hemorrhages.
Accordingly, four different subtypes arise: post-stroke dementia
(PSD) in which dementia appears 6 months after stroke,
subcortical ischemic vascular dementia (SIVaD), multi-infarct
dementia, and MxD (Skrobot et al., 2018). The cognitive deficits
associated with VaD are caused by structural and functional
vascular abnormalities that are exacerbated with age. These
abnormalities promote the emergence of chronic alterations
in the neurovascular functions that underlie the etiology of
cognitive decline observed in VaD (Figure 1).

VaD is tightly associated with several risk factors that
can be categorized into four groups, which comprise: (i)
cerebrovascular disease-related factors; (ii) atherosclerotic
factors, such as smoking, myocardial infarction, diabetes
mellitus, and hyperlipidemia; (iii) demographic factors, such as
age, biological sex and education; and (iv) genetic factors, such as
the emergence of mutations leading to vascular encephalopathies
(Ritchie and Lovestone, 2002; Gorelick, 2004). Noteworthy, these
vascular risk factors are now being recognized as clinical risk
factors for AD pathology (O’Brien and Markus, 2014; Figure 1).

The cerebrovascular disease-related factors include cerebral
tissue loss volume, bilateral cerebral infarction, strategic
infarction, and white matter disease (WMD; Ritchie and
Lovestone, 2002; Gorelick, 2004). Furthermore, hypertension
was shown to be associated with larger white matter and
smaller brain volumes, silent or strategical subcortical or
cortical infarcts, and loss of volume in the thalamus or
temporal lobe that are critical for cognitive functions (Ritchie
and Lovestone, 2002; Gorelick, 2004). While age remains a
principal risk factor for dementia, the presence of familial
dementia history, and the epsilon 4 allele of apolipoprotein E
(ApoE)4 susceptibility gene were recognized as an important risk
factor for VaD (Ritchie and Lovestone, 2002; Gorelick, 2004).
In addition, variables such as the female sex, various types of
infection of lipid concentrations, history of head injury, head
circumference, hormone replacement therapy (HRT), as well as
thyroid dysfunction and preceding history of depression could
interact with ApoE genotype and hence increase the risk of
dementia (Ritchie and Lovestone, 2002; Gorelick, 2004). The

genetic factors include vascular encephalopathies such as cerebral
autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL), autosomal recessive cerebral
arteriopathy with subcortical infarcts and leukoencephalopathy
(CARASIL), and potentially ApoE4 (Ritchie and Lovestone,
2002; Gorelick, 2004). Recently, environmental factors, namely
air pollution, have been shown to constitute an important, yet
underestimated, risk factor for dementia, inducing VaD and AD
(Azarpazhooh and Hachinski, 2018; Béjot et al., 2018). Indeed,
numerous studies have demonstrated that the elevated levels of
air pollutants are directly linked to brain chronic inflammation
and neurodegenerative diseases (Campbell et al., 2005; Schwartz
et al., 2005; Calderón-Garcidueñas et al., 2007; Hartz et al.,
2008; Block and Calderón-Garcidueñas, 2009; Mills et al., 2009;
Rozemuller et al., 2012; Paul et al., 2019). Among air pollutants,
ultrafine particles (UFPs) are particularly deleterious due to
their ability to reach the brain where they act as inflammatory
triggers and neurotoxins (Block and Calderón-Garcidueñas,
2009; Hameed et al., 2020).

As mentioned, VaD prevalence is strongly linked to
cerebrovascular diseases, which essentially include stroke and
cerebral small vessel disease (cSVD; Grinberg and Thal, 2010;
Gorelick et al., 2011; Jellinger, 2013). Indeed, one patient in
10 has a stroke before developing a form of dementia that is not
related to AD. In turn, cSVD was found in up to 62% of patients
diagnosedwith VaD, outlining a strong correlation between these
pathologies (Gorelick et al., 2011; Venkat et al., 2015; van Veluw
et al., 2017; Shih et al., 2018; Iadecola et al., 2019). Stroke and
cSVD are characterized by the dysfunction of the neurovascular
unit, which anatomically comprises sealed endothelial cells
forming the blood-brain barrier (BBB), perivascular cells that
include pericytes, and vascular smooth muscle cells (VSMCs),
astrocytes, microglia, and neurons (Hermann and ElAli, 2012).
The neurovascular unit integrates signals from the different
neighboring cells to generate critical functions that include
BBB maintenance, neurovascular coupling, vascular stability,
and immunomodulation (Zlokovic, 2011; Hermann and ElAli,
2012). Neurovascular functions are impaired after stroke and
cSVD leading to BBB dysfunction, neurovascular uncoupling,
hypoperfusion, inflammation, and loss of neurons (Zlokovic,
2008, 2011; Guo and Lo, 2009; Moskowitz et al., 2010). These
pathological events are at the origin of ischemic and hemorrhagic
lesions, which strongly correlate with the cognitive deficits
observed in VaD.

Despite being the second most common form of dementia
after AD, little is known about the molecular and cellular
mechanisms underlying the pathobiology of VaD. This gap in
the literature is mainly due to disease heterogeneity in the
clinical setup and the lack of an optimal experimental model
that can accurately replicate most of the pathological events
underlying the etiology and progression of the different forms
of VaD. It is now established that accumulation of brain lesions
over time mediated by neurovascular impairments constitutes
a major contributor to the pathobiology of VaD in the elderly
(Venkat et al., 2015; Corrada et al., 2016; Ince et al., 2017;
Summers et al., 2017; van Veluw et al., 2017; Shih et al., 2018).
The review summarizes the current knowledge related to the
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pathological mechanisms underlying the pathobiology of VaD
with an emphasis on stroke, cSVD and risk factors with a focus
on air pollution. We will discuss the challenges and research
directions that might help in a better understanding of VaD
pathobiology, thereby outlining new therapeutic interventions.

MAJOR RISK FACTOR-MEDIATED
MECHANISMS IMPLICATED IN VAD
PATHOBIOLOGY

Stroke-Related Dementia
Ischemic or hemorrhagic strokes trigger major
pathophysiological mechanisms that underlay VaD (Mijajlović
et al., 2017). Indeed, epidemiological studies indicate that
stroke history doubles the risk of dementia in the elderly
(<65 years) and increases the incidence of early mortality
(Savva and Stephan, 2010). Approximately 10% of patients
exhibit signs of dementia before their first cerebrovascular
accident, and another 10% manifest cognitive deficits soon
after their first event (Desmond et al., 2002; Pendlebury and
Rothwell, 2009). Particularly, recurrent stroke events raise the
prevalence of dementia to 30%, constituting the most prominent
causal factor of the disease (Pendlebury and Rothwell, 2009).
Noteworthy, an examination of the association between stroke
rates and dementia in the frame of the National Long-Term Care
Survey (NLTCS) between 1984–2001 reported that the elevated
incidence of post-stroke dementia is related to increased patient
survival, due to clinical improvements in stroke management
(Ukraintseva et al., 2006). Assessment of the neuropsychological
parameters revealed that deterioration of the executive functions,
abstraction, visual memory, and visuoconstruction constitute
some of the most critical long-term cognitive disabilities
observed in stroke patients (Sachdev et al., 2004). In contrast,
praxis-gnosis, working memory, and language have been shown
to be impacted to a lesser extent (Sachdev et al., 2004). The
Sydney Stroke Study disclosed that in 50–85 years old patients
diagnosed with VaD, the stroke volume and premorbid function
were the most significant determinants of cognitive deterioration
following the initial insult (Sachdev et al., 2006). It is remarkable
to notice that in the last decade, stroke incidence increased by
23% in young adults aged between 35 and 50 years, especially
because of the unhealthy lifestyle that meaningfully increased
the rate of risk factors in this population, including smoking,
hypertension, and obesity (Ekker et al., 2019; George, 2020). Due
to the advances in acute stroke care, young stroke patients live
longer and thus are at high risk of developing dementia at later
stages (Pinter et al., 2019).

BBB Dysfunction
Hallmark of stroke pathophysiology (Yang et al., 2019),
BBB dysfunction constitutes a pivotal factor implicated in
the initiation and exacerbation of the cascade of events
leading to dementia (Zlokovic, 2011; Sachdev et al., 2014;
Noe et al., 2020). Following primary injury, BBB breakdown
allows the uncontrolled infiltration into the brain of blood-
borne molecules, including plasma proteins, metabolites,
neurotoxic compounds, and peripheral immune cells that

contribute to secondary injury progression via edema formation,
neuroinflammation, and glial reactivity (Halder and Milner,
2019; Koizumi et al., 2019) that aggravate the initial neurological
deficits (Khanna et al., 2014; Jiang et al., 2018). The experimental
findings indicate that acute BBB impairment is widely mediated
by early inflammatory mediators, such as cytokines and
chemokines, as well as oxidative stress, including reactive oxygen
species (ROS) and reactive nitrosative species (RNS; Yang et al.,
2019). The action of these substrates is further potentiated by
matricellular proteins, proteoglycans, and metalloproteinases
(MMPs) secreted in the extracellular space (Jones and Bouvier,
2014). Experimental and clinical studies revealed that MMP-9
significantly contributes to long-term BBB breakdown in
several brain disorders, namely stroke and neurodegenerative
diseases (Barr et al., 2010; Montagne et al., 2017; Underly et al.,
2017; Figure 2).

Upon ischemic stroke, MMP-9 is secreted by the cells
forming the neurovascular unit via regulation of the extracellular
signal-regulated kinase-(ERK)-1/2) and the signal transducer
and activator of transcription (STAT)-3 pathways, leading to
the degradation of basal lamina/extracellular matrix (ECM)
proteins, and the recruitment and extravasation of peripheral
immune cells (Nishikawa et al., 2018; Jäkel et al., 2020).
Interestingly, human brain studies showed that MMP-9 is
implicated in the degradation of type IV collagen at the
basal lamina, resulting in hemorrhagic transformations (Rosell
et al., 2006, 2008), enhanced leukocyte infiltration, and poor
neurological outcomes (Kim et al., 2016). In parallel, studies
employing MMP-9−/− mice showed that leukocyte-derived
MMP-9 plays an essential role in mediating BBB dysfunction
and is associated with elevated leukocyte transmigration that
exacerbates the inflammatory signaling in the acute phase of
stroke (Gidday et al., 2005). Furthermore, photothrombotic
mouse models of cerebral ischemia have reported that BBB
permeability at the level of the capillary is governed by pericytes
exhibiting MMP-9 activation, which was later neutralized by
specific MMP-9 inhibition (Underly et al., 2017). Elevated
MMP-9 activity has been also reported to be associated
with increased brain edema and IgG extravasation after
ischemia in hyperlipidemic mice (ElAli et al., 2011). These
observations indicate that hyperlipidemia exacerbates stroke-
mediated BBB dysfunction, which could eventually aggravate
dementia (Figure 2).

On an important note, stroke-inducedMMP-9 expression has
risen as an informative prognostic marker for a poor neurological
outcome, increased mortality, and the emergence of typical signs
of dementia (Zhong et al., 2017). Clinical investigations disclosed
that high MMPs expression correlates with increased levels of
albumin cerebrospinal fluid (CSF) in patients with vascular
cognitive impairment (VCI) derived from SIVD, multiple
strokes, and leukoaraiosis (Candelario-Jalil et al., 2011). In
parallel, independently of the presence of vascular risk factors,
elevated serum MMP-9 levels are associated with mild (25.6%
of patients) and severe (27.4%) cognitive impairment 3 months
following stroke according to theMini-Mental State Examination
and Montreal Cognitive Assessment (Zhong et al., 2018).
Moreover, high MMP-9 levels in patients with cardioembolic
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stroke involving the middle cerebral artery (MCA) territory
are related to large infarct volumes and poor behavioral scores
based on the National Institutes of Health Stroke Scale (NIHSS;
Montaner et al., 2001). Otherwise, the strong correlation between
MMP-9 expression and the hyperintense acute reperfusion injury
marker (HARM) has led to consider this protein as a revealing
marker for BBB disruption (Barr et al., 2010). Furthermore,
increased MMP-9 activity has been detected in the frontal and
parietal cortex of postmortem human brains diagnosed with AD
and patients exhibiting cognitive deficits (Bruno et al., 2009).
MMP-9 enhanced expression is also notable in the CSF of AD
patients, directly correlated with T-tau and P-tau levels (Stomrud
et al., 2010). Importantly, a longitudinal study (4–10 years)
enrolling AD and VaD patients revealed higher MMP-9 levels in
the CSF of VaD patients compared to AD or controls (Adair et al.,
2004). These findings imply that assessment of MMP-9 levels
might constitute a potential strategy to distinguish between the
different types of dementia.

Cell-based assays have demonstrated that exposure of
pericytes to amyloid-β (Aβ)42 induced MMP-9 activity, which in
turn ameliorated protein aggregation (Schultz et al., 2014). This
outlines the presence of a direct pathological link between the
molecularmarkers of dementia andMMP-9 activity, even though
MMP-9 is an active substrate for Aβ degradation (Hernandez-
Guillamon et al., 2015). Overall, current evidence suggests
that MMP-9-mediated BBB dysfunction following stroke may
constitute an early pathological mechanism that initiates the
neurodegenerative cascades leading to cognitive deficits over
time. Although MMP-9 inhibition has been proposed as a
therapeutic strategy to attenuate BBB breakdown after cerebral
ischemia (Dong et al., 2009; Chaturvedi and Kaczmarek, 2014),
animal studies showed that MMP-9 is required for neurovascular
remodeling and adaptation in the chronic phase after stroke
(Zhao et al., 2006). Furthermore, MMP-9 is implicated in the
clearance of various misfolded proteins involved in several
neurodegenerative diseases, such as Aβ (Hernandez-Guillamon
et al., 2015). The current knowledge implies that MMP-9 impact
on BBB breakdown and neurodegeneration is time and context-
dependent, which entails a contextualized modulation of protein
expression/activity to preserve BBB integrity and attenuate
cognitive deficits associated with stroke.

Post-stroke Neuroinflammation
Evidence obtained from AD studies outlined an important
pathological link among chronic neuroinflammation, vascular
damage, and cognitive decline in aged patients (Rhodin
and Thomas, 2001; Kinney et al., 2018). Importantly, the
neuroinflammatory responses associated with AD could
be observed as well in other forms of dementia, including
frontotemporal dementia (FTD; Bevan-Jones et al., 2020),
PD (Caggiu et al., 2019), and VaD (Iadecola, 2013).
Neuroinflammation plays a critical role in modulating tissue
injury and repair after stroke. This process integrates various
molecular and cellular mechanisms that comprise the release
of inflammatory and oxidative stress mediators, glial reactivity,
and peripheral immune cell activation and extravasation
(Guruswamy and ElAli, 2017; Dzyubenko et al., 2018; Jayaraj

et al., 2019). In this regard, uncontrolled microglial activation
and the subsequent release of proinflammatory cytokines
after stroke (Zhao et al., 2017) are strongly associated with
demyelination and axonal loss (Sachdev et al., 2004).

It has been reported that in a rodent model of cerebral
hypoperfusion, microglial activation via the complement (C)3-
C3aR pathway, which is implicated in myelin phagocytosis,
resulted in learning and memory deficits (Zhang et al., 2020).
Interestingly, the cognitive impairments were attenuated by the
genetic deletion of c3ar1 or via the administration of SB290157,
a potent C3aR antagonist (Zhang et al., 2020). Similarly,
experimental investigations using cerebral ischemia have shown
that fingolimod (FTY720), a potent agonist of sphingosine
1 phosphate (S1P), induced a microglial anti-inflammatory
phenotype (M2 phenotype) through the activation of STAT-3
signaling pathway (Qin et al., 2017). Modulating microglial
activation to adopt a protective M2 phenotype resulted in
enhanced oligodendrocytogenesis and white matter integrity,
and reduced cognitive deficiencies associated with working
memory (Qin et al., 2017). Induction of severe chronic cerebral
hypoperfusion (SCCH) in APP/PS1 mice that overproduced Aβ

accelerated spatial learning and memory decline in 4-month
adult animals. This was correlated to the accumulation of
parenchymal Aβ plaques in the hippocampus and diminished
activity of the ERK-1/2 pathway. APP/PS1 mice subjected to
SCCH had higher levels of patrolling monocytes in peripheral
blood. Interestingly, this model revealed that SCCH reduces
microglial interaction with Aβ plaques in the hippocampus,
denoting a reduced capacity for Aβ clearing in the brain
parenchyma (Bordeleau et al., 2016). Alternatively, the release
of prostaglandins, which act as inflammatory mediators upon
stroke, has been shown to be associated with exacerbated Aβ-
mediated cognitive decline and impaired synaptic plasticity
(Kotilinek et al., 2008; Figure 2).

Loss of white matter integrity by hyper-reactive ramified
and amoeboid microglia was also found in the posterior
cingulate cortex of post-mortem brains of patients diagnosed
with Down syndrome who are at higher risk of developing AD
neuropathology (Martini et al., 2020). Furthermore, microglia
in post-mortem AD brains exhibit accelerated aging and
transcriptional alterations associated with the isoforms of ApoE,
a protein broadly related to both dementia and cardiovascular
disease (Srinivasan et al., 2020). In this regard, findings from
subarachnoid hemorrhage in mice indicate that ApoE mediates
protective effects following injury by inducing M1 microglial
quiescence (Pang et al., 2018), suggesting that adequate lipid
metabolism modulates neuroinflammation. Functional human
brain investigations using positron emission tomography (PET)
coupled to 11C-PK11195, which is an in vivomarker of activated
microglia, have unraveled a progressive microglial activation
and neuroinflammation, which were correlated with long-term
(14 to 16 months) cognitive decline in AD patients (Malpetti
et al., 2020). In this regard, activated microglia exhibiting a
pro-inflammatory neurotoxic phenotype (M1 phenotype) trigger
the activation of pro-inflammatory astrocytes (A1 astrocytes)
via tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and
C1q cytokines (Liddelow et al., 2017). In turn, A1 reactive
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astrocytes exacerbate oligodendrocyte and neuronal death
(Liddelow et al., 2017).

In line with these findings, an exaggerated astrocyte reactivity
has been related to dementia and cognitive decline (Jo et al.,
2014; Csipo et al., 2020). The evidence suggests that morbid
neuroinflammatory responses maintained by A1 reactive
astrocytes could result in mediating brain injury or age-related
neurodegeneration and cognitive deficits. For instance,
hippocampal astrocytes are susceptible to the upregulation
of inflammatory-related genes and pathways, such as C3 and
C4b, C-X-C motif chemokine ligand (CXCL)-10, and the
peptidase inhibitor serine protease inhibitor A3N (SERPINA3N;
Clarke et al., 2018). Interestingly, in a mouse model of familial
Danish dementia (FDD), abundant A1 reactive astrocytes were
detected in the brain, which correlated with the appearance of
cerebral amyloid angiopathy (CAA), a disease characterized by
the deposition of Aβ within the cerebral vasculature and a major
risk of VaD. In this context, an increased number of astrocytes
was observed in perivascular zones, accompanied by numerous
cell branches and enhanced glial fibrillary acid protein (GFAP)
expression (Taylor et al., 2020; Figure 2).

Several approaches have demonstrated that the usage
of anti-inflammatory strategies could attenuate cognitive
deficits associated with dementia. For instance, activation
of the cannabinoid receptor 2 (CB2R) using different agonists
promoted memory restitution through the reduction of oxidative
stress and mitochondrial dysfunction (Jayant and Sharma, 2016).
In line with these findings, cell-based assays have shown that
CB2R activation stimulated the microglial release of IL-10,
a key anti-inflammatory cytokine, via activation of ERK1/2,
c-Jun N-terminal kinase (JNK), and mitogen-activated protein
kinases (MAPKs) pathways, accompanied by the inhibition of
the nuclear factor-κB (NF-κB) pathway (Correa et al., 2010).
Likewise, administration of the CB2R agonist paeoniflorin (PF)
ameliorated memory and learning deficits in mice, accompanied
by induction of M2 cells and the release of anti-inflammatory
mediators, such as transforming growth factor (TGF)-β1,
and IL-10, instead of pro-inflammatory ones, such as TNF-
α, IL-1β, and IL-6. This phenotypic switch is driven by the
enhanced activity of phosphoinositide-3-kinase (PI3K/AKT)
anti-inflammatory pathway and the inhibition of the mammalian
target of rapamycin (mTOR)/NF-κB pro-inflammatory signaling
(Luo et al., 2018). Experimental findings indicate that the
inhibition of mTOR attenuated cognitive deficits, which were
accompanied by a restoration of M1/M2 microglia phenotypic
switch following cerebral hypoperfusion (Chen et al., 2016).

Remarkably, in a rodent model of VaD, it has been shown
that acupuncture could attenuate inflammation by reducing
TNF-α and Toll-like receptor (TLR)4 expression in microglia,
and suppressing the myeloid differentiation factor (MyD88)/NF-
κB pathway (Wang et al., 2020). Furthermore, pharmacological
administration of PLX5622, a potent inhibitor of colony
stimulating factor-1 receptor (CSF-1R) that is required for
microglial cell survival, improved short-termmemory in a rodent
model of induced hypertension. This effect was accompanied by
controlled microglia reactivity and preservation of BBB integrity
(Kerkhofs et al., 2020). It has also been demonstrated that

depletion of microglia viaCSF1R inhibition prevented Aβ plaque
development in the hippocampus of a mouse model of AD
(Spangenberg et al., 2019). Attenuation of microglial reactivity
via blockage of CCL-5 signaling also preserved BBB integrity in
the context of systemic inflammation (Haruwaka et al., 2019).
Taken together, there is strong evidence associating chronic
uncontrolled neuroinflammatory responses after stroke to the
emergence of long-term cognitive disabilities and dementia,
mediated essentially bymicroglial reactivity. Therefore, strategies
aiming to modulate microglial response by stimulating a
protective phenotype might constitute a potential approach to
attenuate VaD occurrence after stroke.

Stroke-Mediated Proteinopathies
Accumulation of Aβ in the brain constitutes a hallmark of AD
pathogenesis (Chen et al., 2017). Early studies using human
post-mortem brains revealed that amyloid precursor protein
(APP) is not implicated exclusively in AD pathology, and its
expression is as well induced in the brain after stroke (Cochran
et al., 1991; Jendroska et al., 1997). For instance, mutant mice
overexpressing APP exhibited a substantial reduction of cerebral
blood flow (CBF) accompanied by larger infarcts after stroke,
suggesting that APP exacerbated ischemic injury by impairing
structural and functional vascular integrity (Zhang et al., 1997).
Moreover, it has been shown that cerebral ischemia promotes
APP deposition in the lesion core, the perilesional regions, as well
as in the white matter areas exhibiting myelin loss (Nihashi et al.,
2001; Zhan et al., 2015).

Endothelin (ET)-1 is a powerful vasoconstrictor synthesized
by endothelial cells and reactive astrocytes, which have been
shown to be implicated in ischemic stroke pathobiology as
well as Aβ deposition. Examination of post-mortem human
brains showed strong ET-1 expression in reactive astrocytes
surrounding Aβ plaques (Hung et al., 2015). Furthermore, ET-1
overexpression in the acute phase after stroke has been involved
in BBB disruption, glial reactivity, and neuronal death. Indeed,
mutant mice exhibiting astrocytic ET-1 overexpression (GET-
1 mice) experience severe memory and spatial learning deficits,
associated with the upregulation of cleaved caspase-3, TNF-
α, and IL-1β (Thiel et al., 2014; Hung et al., 2015). Using
cell-based assays, ET-1 overexpression in reactive astrocytes
has been shown to amplify Aβ production (Hung et al.,
2015). Aβ accretion contributes to the development of cognitive
deficits by impairing the receptor for advanced glycation
endproducts (RAGE)-mediated Aβ clearance, which exacerbates
inflammation, oxidative stress, and neurodegeneration (Min
et al., 2020). These findings indicate that ET-1 upregulation
after ischemic stroke is tightly associated with Aβ production
and deposition and has considerable effects on excitotoxicity
and BBB integrity. Furthermore, comorbid models of Aβ

toxicity and cerebral ischemia have reported that Aβ deposition
exacerbates ischemic damage. This condition leads to ventricular
enlargement and striatal atrophy, morphological alterations in
microglia, increased production of inflammatory mediators and
enhanced glial communication via the gap junction proteins
connexin (CX)-43. These observations are particularly important
as ventricular enlargement was associated with deposition of
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neurofibrillary tangles and Aβ plaques, directly implicated in
the pathogenesis of various forms of dementia (Amtul et al.,
2015). Furthermore, evidence indicates that the interactions
among lipoprotein-associated triggering receptor expressed on
myeloid cells (TREM) 2 and apolipoproteins are involved in
modulating microglia-mediated Aβ phagocytosis (Yeh et al.,
2016), thus suggesting that Aβ clearance is associated with
lipid metabolism (Figure 2). Likewise, it has been shown that
exogenous administration of Aβ triggers tau phosphorylation
and magnifies learning and memory deficits in animals subjected
to cerebral ischemia (Song et al., 2013).

Finally, the generation of RNS, including peroxynitrite,
revealed by the formation of 3-nitrotyrosine (3-NT), is increased
in perivascular astrocytes and microglial cells after Aβ42
injection, strongly correlating with BBB leakage (Ryu and
McLarnon, 2006). These findings suggest that Aβ pathology
could trigger the release of reactive nitrogen species in astrocytes,
directly undermining cerebrovascular integrity. Moreover, it
has been demonstrated that Aβ binding to RAGE induces
ROS production leading to loss of the tight junction proteins
claudin-5, occludin, and zonula occludens (ZO)-1, as well as
deficient endothelial cell function (Carrano et al., 2011). Overall,
this bidirectional pathological crosstalk implies that exacerbated
cognitive decline strongly emerges when cerebral injury and Aβ

toxicity occur comorbidly.

cSVD
cSVD comprises numerous pathologies impacting cerebral
arteries, arterioles, venules, and capillaries, which are associated
with diverse pathological and etiological processes (Østergaard
et al., 2016; Staszewski et al., 2017; Li et al., 2018; Parkes et al.,
2018). Six different types of cSVD are classified according to
their etiology (Pantoni, 2010; Li et al., 2018). Atherosclerosis
and sporadic and hereditary CAA are the most frequent forms.
Recent reports outlined a significant increase in the number of
genetic microangiopathies distinct from CAA such as CADASIL
or Fabry’s disease (Razvi and Bone, 2006; Ballabio et al.,
2007; Dichgans, 2007; Hara et al., 2009). Microangiopathies
caused by inflammation or mediated by immunity are rare
and characterized by the presence of inflammatory cells within
the vasculature (Jennette and Falk, 1997), generally caused
by mechanisms associated with systemic pathologies. Venous
collagenosis is a pathologic thickening of the wall of veins and
venules that are located near the lateral ventricles, thus leading
to a smaller lumen and sometimes to an occlusion (Figure 2).
Finally, post-radiation angiopathies are a side effect of cerebral
irradiation that appears a few months to years after treatment.
These angiopathies mainly affect small vessels of the white matter
associated with fibrinoid necrosis, resulting in an increased
thickness of the walls accompanied by a reduced diameter, which
jointly could lead to a thrombotic occlusion (Dropcho, 1991).

cSVD Associated Parenchymal Pathology
cSVD refers to various and complex pathological and etiological
processes. Therefore, the clinical manifestations depend on
both the cause of the pathology and the affected brain
territory. Among the most common symptoms are stroke-related

manifestations, progressive cognitive deterioration, VaD, gait
disturbance, sphincter dysfunction, and psychiatric disorders
(van der Flier et al., 2005; Pantoni, 2010; Del Bene et al., 2013;
Li et al., 2018; de Laat et al., 2011). cSVD is thought to constitute
the major cause of vascular cognitive deficits and are responsible
for up to 45% of dementia cases (Shi andWardlaw, 2016; Li et al.,
2018). Cognitive deficits are associated with impaired executive
functions, decline in memory and attention, regression in verbal
fluency, and delayed recall. These symptoms are accompanied by
others that are not specific, including dizziness, trouble sleeping,
tinnitus, and hearing loss. Moreover, neuropsychiatric symptoms
can be observed, including hallucinations, agitation, depression,
anxiety, disinhibition, apathy, irritability, and changes in
appetite. Most of these manifestations are often accompanied by
brain microbleeds. Cerebral microangiopathies are accountable
for up to 20–30% of ischemic stroke as well as a considerable
proportion of hemorrhage and encephalopathies caused by
emboli, thrombosis, or stenosis of the vessel (Cai et al., 2015; Shi
and Wardlaw, 2016; Regenhardt et al., 2019).

In addition to the cerebrovascular pathologies, cSVD
exhibits a unique parenchymal pathology characterized by small
subcortical infarcts, lacunar stroke, microbleeds, white matter
hyperintensities (WMH), enlarged perivascular spaces, and brain
atrophy detectable in imaging (van der Flier et al., 2005; de
Laat et al., 2011; Del Bene et al., 2013; Wardlaw et al., 2013;
Li et al., 2018; Regenhardt et al., 2018; Das et al., 2019).
Small subcortical ischemic stroke is the result of severe tissue
ischemia caused by the occlusion of a perforating arteriole.
Patients either have typical stroke symptoms or a lesion visible
only using neuroimaging approaches (Wardlaw et al., 2013; Li
et al., 2018). Lesions can be anywhere in the brain and are
round or ovoid and less than 20 mm in diameter (Smith et al.,
2012; Brundel et al., 2012; van Veluw et al., 2017; Hartmann
et al., 2018). They appear hyperintense in a diffusion-weighted
image (DWI), hypointense on the map of apparent diffusion
coefficients, and normal to hyperintense in fluid-attenuated
inversion recovery (FLAIR)/T2 imaging (Okazaki et al., 2015;
Potter et al., 2015; Li et al., 2018). DWI is the most sensitive
technique currently used to detect ischemia a few hours after
stroke onset. Recent infarcts will form a cavity characterized
by morphological changes that include a reduction in volume
and diameter within 90 days of the onset of the infarction
(Moreau et al., 2012; Potter et al., 2015; Li et al., 2018). These
infarcts can evolve in three different ways, namely lacuna, WMH
without cavitation T2-weighted sequence, and finally, they could
disappear without visible consequences in conventionalmagnetic
resonance imaging (MRI). When a recent small subcortical
ischemic stroke resolves into lacuna, it actually forms a fluid-
filled cavity called a lacunar stroke and represents 40% of
acute ischemic strokes. Lacunar insults are divided in two
different categories; cavitated old infarcts and incomplete infarcts
(Fisher, 1965; Lammie et al., 1998; Regenhardt et al., 2018). Old
infarcts are pan-necrotic cavitation with scattered macrophages
whereas incomplete infarcts are described as exhibiting loss of
neurons and oligodendrocytes associated with invading CD68+

macrophages and reactive microglia in addition to reactive
astrocytes that are found inside and around the lesion site
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(Merino and Hachinski, 2000; Brundel et al., 2012; Regenhardt
et al., 2018).

The vascular damage can also develop into BBB leakage
or cerebral microbleeds, which appear as small, round, and
homogeneous hypointense foci on T2-weighted MRI and are
mostly asymptomatic. They originate essentially from the
rupture of a precapillary arteriole and are usually associated
with vascular risk factor exposition or vascular Aβ deposition
(Cordonnier et al., 2007; De Silva and Faraci, 2016; Shi
and Wardlaw, 2016; Toth et al., 2017). The rupture is
caused by various factors such as age, hypertension, cerebral
ischemia, dementia, and cerebral amyloid angiopathy (CAA),
and participates in cognitive deficits, dementia, and transient
neurological deficits (Martinez-Ramirez et al., 2014; Shi and
Wardlaw, 2016; Li et al., 2018). Microbleeds trigger proliferation
and migration of microglia and astrocytes as well as monocyte
recruitment (Liddelow et al., 2017). The immune cells release
various inflammatory factors that impair neuronal function, as
well as neurotransmitters that may be neurotoxic and interfere
with neuronal circuitry to promote cognitive decline (Tancredi
et al., 2000; Beattie et al., 2002; Rosidi et al., 2011; Donzis and
Tronson, 2014).

The cerebral white matter is composed of myelinated
axons, myelinating oligodendrocytes, oligodendrocyte precursor
cells (OPCs), astrocytes, and microglia (Hase et al., 2018).
WMH is common in older people and is a typical feature
of cerebral microangiopathies, which are associated with BBB
disruption, small white matter infarcts, glial activation, loss
of oligodendrocytes, and demyelination caused by chronic
diffuse hypoperfusion associated with a reduced CBF (Prins
and Scheltens, 2015; Li et al., 2018). WMH is generally located
within the white matter including the pons and brainstem but
also in the deep gray matter. It is distributed symmetrically
and bilaterally and appears hyperintense on FLAIR or T2 MRI.
Importantly, WMH triples the risk of stroke, doubles the risk of
dementia, and substantially increases the risk of death (Debette
and Markus, 2010; Pantoni, 2010; Shi and Wardlaw, 2016).
Symptoms develop insidiously and are associated essentially with
cognitive impairments, dementia, and depression (Debette and
Markus, 2010; Pantoni, 2010; Shi and Wardlaw, 2016).

The perivascular space is an extension of the subarachnoid
space that surrounds the brain microvasculature. It is a liquid-
filled space that cannot be detected by conventional imaging in
a physiological context. When this space is widened, it often
appears hyperintense on T2MRI, hypointensity on T1 weighting,
and sometimes hypointense on FLAIR (Aribisala et al., 2013; Shi
and Wardlaw, 2016; Li et al., 2018). Finally, brain atrophy refers
to a diminished brain volume on neuroimaging characterized by
symmetrical or asymmetrical decreased total volume, increased
ventricular volumes, enlarged superficial sulci, and decreased
specific gray or white matter volumes (Mok et al., 2011). One
main region affected is the hippocampus and is associated with
cognitive decline (Muller et al., 2011; Jokinen et al., 2012).

Atherosclerosis
Atherosclerosis is an age-related condition that constitutes a
major risk factor for cerebral microangiopathies. As its severity

is increased by diabetes and hypertension, it is also called
hypertensive microangiopathy (Tan et al., 2017; Li et al., 2018;
Ter Telgte et al., 2018). The risk factors for atherosclerosis
are also hyperlipidemia, smoking, and moderate to severe
sleep apnea (Østergaard et al., 2016; Cannistraro et al., 2019).
Atherosclerosis is characterized by a chronic inflammation
associated with the deposition of low-density lipoproteins
(LDL) within the vasculature, leading to its internalization
by endothelial cells (Tabas et al., 2015), and resulting in
the thickening and hardening of the arterial walls (Lusis,
2000; Shabir et al., 2018). Upon deposition, LDL undergoes
oxidation by ROS to form oxidized (ox)-LDL, which further
exacerbates the inflammatory response within the vasculature
(Tabas et al., 2007). Indeed, by binding to vascular cell adhesion
molecule (VCAM)-1 and P-selectin, monocytes can infiltrate
the intima and differentiate into macrophages to engulf ox-LDL
(Chistiakov et al., 2016). Macrophages, which are now called
foam-cells due to the intracellular accumulation of lipids (Spann
et al., 2012), accumulate and form stable fatty-streaks into
the intima, and cells can calcify over time to slowly occlude
the vessel (Alexander and Owens, 2012; Chistiakov et al.,
2017). These pathological events occur in large to medium
size arteries and lead to microbleeds, microinfarcts, as well
as lipohyalinosis, characterized by the deposition of hyaline
into the walls of connective tissue (Gorelick et al., 2011). This
aspect is specific to the brain due to inflammation caused
by ROS, ox-LDL, and gliosis involving astrocytes, OPCs, and
microglia (Caplan, 2015). Lipohyalinosis fosters the infiltration
of monocytes and T helper (TH)-1 lymphocytes that amplify
the production of inflammatory mediators, such as TNF-
α and interferon (INF)-γ (Stemme et al., 1995; Frostegård
et al., 1999). Moreover, the assembly of inflammasomes can
be promoted through the activation of nucleotide-binding
oligomerization domain (NOD)-like receptor protein (NLRP)-
3, stimulated by the formation of cholesterol crystals, caspase-1
and apoptosis-associated speck-like protein containing (ASC),
caspase activation and recruitment domain (CARD; Weber
and Noels, 2011). This results in IL-1β release, which in turn
stimulates the release of IL-6 and C-reactive protein (CRP),
implicated in the pathogenesis of atherosclerosis and thrombosis
(Ridker et al., 2017; Figure 2).

Besides, the elevated levels of LDL combined with the low
levels of high-density lipoprotein (HDL) play an important
role in the pathogenesis of atherosclerosis and constitute as
well a major risk factor for VaD (Hao and Friedman, 2014;
Georgakis et al., 2020). Indeed, HDL exerts a protective role
through its antioxidant properties and mediates beneficial effects
on platelets and endothelial function, thus on coagulation and
inflammation (Bandeali and Farmer, 2012). Furthermore, HDL
interacts with triglyceride-rich lipoproteins, attenuating their
deferential effects (Bandeali and Farmer, 2012). Moreover, it
could contribute to the removal of cholesterol excess from
the brain microvasculature through ApoE and heparin sulfate
proteoglycans (Mulder and Terwel, 1998). HDL counteracts
the inhibition of vessel relaxation caused by ox-LDL and
decreases LDL peroxidation which affects cellular function and
impairs membrane-bound receptors and enzymes (Braughler
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and Hall, 1992; Matsuda et al., 1993). Importantly, the impact of
hyperlipidemia seems to be differentially modulated depending
upon biological sex. Indeed, a recent study shows that females
exhibit greater expression of genes related to neuroprotection
in response to lipid stress compared to age-matching males
(Nuthikattu et al., 2020). Finally, lipid derivatives are now
being under the scope of researchers who are trying to unravel
novel biomarkers to better understand and diagnose VaD
pathology. Indeed, in an interesting recent study that aimed
to discover lipid biomarkers in the context of VaD, it has
been reported that patients with dementia exhibit low levels
for ceramides, cholesterol esters, and phospholipids, and high
levels of glycerides compared to controls (Liu et al., 2020). These
observations indicate that lipid derivatives could indeed be used
as novel diagnostic and prognostic biomarkers in VaD. However,
more research is needed in this direction to validate the use of
lipid derivatives as diagnostic and prognostic biomarkers in VaD.

Vascular damage caused by atherosclerosis can lead to
microatheromas, microaneurysms, and even stenosis or
obstruction of the vessel, impairing the mechanisms of
blood flow autoregulation and leading to chronic cerebral
hypoperfusion (Pantoni, 2010; Li et al., 2018). Importantly,
occlusion of the cerebral arteries results in local ischemia or
lacunar infarction (Kraft et al., 2017; Ter Telgte et al., 2018),
while stenosis and hypoperfusion in the white matter cause
incomplete ischemia lesions evidenced by neuroimaging as white
matter hyperintensity (Rigsby et al., 2007). When the pathology
affects the cerebral arterioles <50 µm in diameter, it is called
small cerebrovascular atherosclerosis (Li et al., 2018).

Sporadic and Hereditary CAA
CAA is a chronic degenerative disease characterized by the
loss of VSMCs and the accumulation into the vessel wall of
eosinophilic hyaline material composed of soluble Aβ40 (Attems
et al., 2011; Charidimou et al., 2017). CAA affects 50–60% of
the elderly population affected by dementia, including 85–95%
of AD cases (Sacco, 2000; Jellinger, 2002; Thal et al., 2003;
Keage et al., 2009; Charidimou et al., 2017; Zhang et al., 2017;
Li et al., 2018). The initial cognitive deficits associated with
VaD could be explained by the particular sensitivity of the
hippocampus and the cortex to CAA (Arvanitakis et al., 2011; Li
et al., 2018). CAA is associated with changes in basal membrane
(BM) composition and morphology that could predispose Aβ

accumulation in the vessel even though the mechanism is not
yet fully understood (Perlmutter et al., 1990, 1991; Su et al.,
1992; Morris et al., 2014; Howe et al., 2020). Among the
reported changes are BM thickening and degeneration, abnormal
heparan sulfate proteoglycans (HSPGs) deposits, and irregular
vasculature accompanied by increased collagen IV, fibronectin,
agrin, and perlecan expression (Berzin et al., 2000; Farkas et al.,
2000; Bourasset et al., 2009; Gama Sosa et al., 2010; Keable
et al., 2016; Lepelletier et al., 2017; Magaki et al., 2018; Singh-
Bains et al., 2019). Furthermore, vascular functional impairments
are featured by BBB dysfunction caused by loss of endothelial
cells, deregulation of mural cells mediated by oligomeric Aβ

accumulation, as well as induction of astrocytosis with dystrophic
endfeet surrounding BM Aβ deposits (Shimizu et al., 2009; de

Jager et al., 2013; Giannoni et al., 2016; Yang et al., 2017; Magaki
et al., 2018; Nortley et al., 2019). Two possible mechanisms for
Aβ deposition have been proposed: (i) release of vascular Aβ

from VSMCs directly into the vessel wall; and (ii) release of
parenchymal Aβ by neurons which deposits afterward into the
vessel wall (Davis et al., 2004; Herzig et al., 2004; Vidal et al.,
2009; ElAli et al., 2013). In both cases, the protein accumulates
due to a poor clearance towards the periphery (Davis et al.,
2004; Herzig et al., 2004; Vidal et al., 2009; ElAli et al.,
2013). Insufficient Aβ clearance can impair perivascular drainage
pathways or diminish the ATP binding cassette subfamily
B member-1 (ABCB1) and low-density lipoprotein receptor-
related protein (LRP)1, a specialized endothelial-mediated active
transport system implicated in Aβ mobilization from the
brain into the blood circulation, namely (Deane et al., 2004;
Herzig et al., 2006; Weller et al., 2008; Hawkes et al., 2011).
Interestingly, LRP1 plays an important role in protecting against
neurodegeneration. Indeed, LRP1 downregulation doesn’t only
affect Aβ clearance but causes as well BBB breakdown through
activation of MMP-9, thus leading to loss of neurons and
cognitive deficits (Nikolakopoulou et al., 2021). Furthermore,
recent evidence reveals that vascular Aβ could be engulfed and
eliminated by circulating patrolling monocytes, which act as the
housekeeper vascular homeostasis by surveying endothelial cells
(Auffray et al., 2007; Carlin et al., 2013; Michaud et al., 2013;
Thériault et al., 2015). In this regard, it has been demonstrated
that patrolling monocytes located at the luminal wall internalize
Aβ microaggregates that are diffusing from the parenchyma
into the blood. Unfortunately, patrolling monocyte ability to
phagocyte vascular Aβ in AD is defective, resulting in an
overall increase of highly toxic Aβ40 and Aβ42 oligomers (Hallé
et al., 2015; Gu et al., 2016). Moreover, chronic mild cerebral
hypoperfusion impairs BBB functional properties and promotes
the accumulation of circulating Aβ into the vessel wall, which
initiates the cascade of parenchymal Aβ deposition (ElAli et al.,
2013). Aβ accumulation and BM rearrangement trigger BBB
breakdown, endorsing the formation of perivascular edema and
the infiltration of toxic blood-derived substrates into the brain,
which in turn contribute to the exacerbation of localized injuries
and enlargement of the perivascular space (Holland et al., 2008;
Hartz et al., 2012; Wardlaw et al., 2013; Li et al., 2018; Figure 2).

The overwhelming evidence is suggesting that the here
mentioned vascular abnormalities leading to dementia reported
in CAA occur as well in different forms of dementia, including
AD and LBD (Salat et al., 2006; Okamoto et al., 2010;
Soontornniyomkij et al., 2010; Arvanitakis et al., 2011; Love et al.,
2014; Martinez-Ramirez et al., 2014; Reijmer et al., 2016; Li et al.,
2018). This form of cSVD can be sporadic or of a genetic origin.
For instance, a syndrome called hereditary brain hemorrhage
with amyloidosis (HBHA) is associated with a mutation in the
APP gene. This syndrome results in the deposition of misfolded
amyloid fibrils in the walls of cerebral arterioles, which in
turn activates a cascade of events leading to the development
of CAA. The clinical phenotype develops between the ages of
45–65 years and is associated with intracerebral hemorrhages,
WMH, multifocal lesions of a hemorrhagic and ischemic nature
(Kamp et al., 2014; Marini et al., 2020). The presence of ApoE4
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allele, which constitutes the main risk factor for AD, has also
been demonstrated to constitute an important risk factor for this
form of cSVD (Hermann and ElAli, 2012). ApoE4 is a lipid-
binding protein which plays an important role in lipoprotein
metabolism as well as transport of triglycerides and cholesterol
(Hirsch-Reinshagen et al., 2009). It binds to LDL, very-low-
density lipoprotein (VLDL) debris, and some HDL via LRP (Bu,
2009; Leduc et al., 2010). ApoE4 can form complexes with Aβ

and impairs Aβ through LRP thus attenuating its clearance and
subsequently leading to its accumulation in the brain (Cho et al.,
2001; Verghese et al., 2013). Moreover, ApoE4 increases the
formation of Aβ oligomers, which are now well established to
constitute the most neurotoxic form of Aβ (Hashimoto et al.,
2012; Youmans et al., 2012). Interestingly, human pericytes
of the prefrontal cortex and hippocampus of ApoE4 carriers
exhibit increased activation of nuclear factor of activated T-cells
(NFAT), which might account for CAA occurrence (Blanchard
et al., 2020; Figure 2).

Moreover, non-APP sources of CAA exist and are caused by
mutations of the BRI2 [i.e., integral membrane protein (ITM)2B]
gene, essentially a codon stopmutation. Indeed, processing of the
mutated form of BRI2 protein leads to the generation of 34-mer
amyloid Bri (ABri) and amyloid Dan (ADan) peptides that
accumulate in the brain, either to the ABri amyloid subunit or
the AD amyloidogenic fragment. ABri and ADan are responsible
for the Familial British (FBD) and Danish (FDD) dementia
characterized among other pathological features by severe CAA
(Vidal et al., 1999, 2000; Yamada and Naiki, 2012).

Genetic cSVD
Mutations in specific genes constitute the third most common
cause of cSVD, amongwhich themutation of the neurogenic locus
notch homolog protein (NOTCH)3 gene is the better characterized
(Cannistraro et al., 2019; Marini et al., 2020). NOTCH3 is
a member of the transmembrane receptor NOTCH family,
which is critically involved in developmental patterning, cell fate
decisions, regulation of cell survival, and proliferation (Kopan
and Ilagan, 2009; Bray, 2016; Baron, 2017; Hosseini-Alghaderi
and Baron, 2020). During adulthood, NOTCH3 regulates stem
cells and their lineages to promote tissuemaintenance and repair.
NOTCH3 is expressed by VSMCs and pericytes and plays a
key role in regulating the crosstalk between the mural and
endothelial cells. It controls the vascular tone and flow-mediated
dilation via the modulation of the Ras homolog family member
A (RHOA)/ Rho-associated protein kinase (ROCK) pathway in
cerebral arteries (Joutel et al., 2000; Belin de Chantemèle et al.,
2008; Li et al., 2009; Marini et al., 2020). However, the role of
NOTCH3 is not restricted to the vasculature, since it is expressed
in neural stem cells and is implicated in neuronal differentiation
(Alunni et al., 2013; Kawai et al., 2017).

A mutation in the NOTCH 3 gene is responsible for
CADASIL, the most common autosomal dominant inherited
cSVD (Louvi et al., 2006; Di Donato et al., 2017; Hosseini-
Alghaderi and Baron, 2020; Marini et al., 2020). NOTCH3 gene
is affected essentially by missense mutations that lead to an
odd number of cysteine residues located in the extracellular
domain of the encoded receptor, and is associated with an early

accumulation of the receptor’s extracellular domain containing
aggregates in small vessels (Joutel et al., 2000, 2001; Monet-
Leprêtre et al., 2013; Yamamoto et al., 2013). The function
and activity of the NOTCH3 receptor are differently impacted
by the mutations. However, the accumulation of extracellular
domain containing aggregates in small vessels leads to mural cell
degeneration via apoptosis or impaired proliferation (Joutel et al.,
2000, 2001; Monet-Leprêtre et al., 2013; Yamamoto et al., 2013).
Furthermore, the mutation itself causes profound morphological
changes in pericytes, associated with dysfunctional mitochondria
that could lead to oxidative and phosphorylation deficiencies,
secondary lysosomes, and large cytoplasmic vesicles that result
in cellular injury and autophagic apoptosis (de la Peña et al.,
2001; Gu et al., 2012). This cascade of events cause neurovascular
unit dysfunction characterized by detachment of astrocytic
endfeet, destabilization of the vasculature, deregulation of
vascular contractility, leakage of the BBB, and infiltration of
toxic blood-born components into the brain parenchyma due
to the decreased endothelial adherens junction protein, thus
jointly resulting in diminished reactivity to CO2 (Ghosh et al.,
2015; Figure 2).

Pericytes and endothelial cells are intimately interconnected
through peg-and-socket junctions, which degenerate upon
NOTCH3 mutations. For instance, endothelial cells exhibit
degenerative features, such as selective death or swelling, causing
vessel stenosis or occlusion (Dziewulska and Lewandowska,
2012). Deregulation of pericyte-endothelial cells crosstalk causes
cerebrovascular dysfunction that comprises reduced vascular
density and impaired CBF (Tuominen et al., 2004; Lacombe
et al., 2005; Miao et al., 2006; Gu et al., 2012; De Guio et al., 2014;
Liu X.-Y. et al., 2015; Ihara and Yamamoto, 2016; Ping et al.,
2019). Moreover, chronic cerebral hypoperfusion resulting from
cerebrovascular dysfunction exacerbates pericyte degeneration,
reduces pericyte coverage for the capillaries, and subsequently
increases BBB permeability leading to white matter impairments
and neuronal loss (Ueno et al., 2002; Bell et al., 2010; Montagne
et al., 2018; Liu et al., 2019; Nikolakopoulou et al., 2019). BBB
breakdown allows the infiltration into the parenchyma of toxic
blood-born metabolites that accumulate around the vasculature,
thus inducing macrophage, microglia, and T-cells activation
and recruitment, which jointly promote axonal degeneration
(Davalos et al., 2012; Ryu et al., 2015). Neuronal loss is mainly
provoked by the secretion of pro-inflammatory mediators
and the generation of ROS and RNS by pericytes within
the perivascular space, which further exacerbates leukocyte
adhesion and infiltration as well as microglial cell activation
(Matsumoto et al., 2018; Erdener and Dalkara, 2019). Finally,
the structural lesions within the white matter are worsened by
the release of pericyte-derived bone morphogenetic protein
(BMP)-4, which promotes astrogliosis (Uemura et al., 2018,
2020). Evidence of these pathological events could be detected
using imaging approaches that indicate WMH, ischemic
manifestations, subcortical hemorrhages, and microbleeds.
A new sensitive assay was recently developed allowing
pericyte injury detection in the CSF, a new technology that
could serve as a diagnostic tool for WMD (Sweeney et al.,
2020).
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FIGURE 1 | Scheme illustrating the continuum of risk factors that contribute to VaD etiology. VaD emerges as a conjunction of various risk factors affecting vascular
homeostasis, namely cerebrovascular diseases, atherosclerosis, genetic and environmental factors. VaD diagnosis is based on the evaluation of cognitive
deficiencies combined with neuroimaging to detect underlying vascular alterations. VaD, vascular dementia; CADASIL, cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy; CARASIL, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; cSVD,
cerebral small vessel disease. Created with BioRender.com.

CADASIL develops gradually over time and the earliest
symptoms appear on average around 30 years of age, usually
10 years earlier in women than men, and are manifested as
migraines with aura (Guey et al., 2016; Di Donato et al., 2017).
The migraine could also manifest with atypical attacks with
basilar, hemiplegic, or prolonged aura and a few patients can
even develop very severe attacks leading to confusion, fever,
meningitis, or even coma that can mimic encephalopathy (Schon
et al., 2003; Vahedi et al., 2004; Ragno et al., 2013; Tan and
Markus, 2016; Drazyk et al., 2019). Adults between the age of
20 and 65 years are subject to transient ischemic attacks and
stroke (Lesnik Oberstein et al., 2001). CADASIL is associated as
well with some psychiatric manifestations, which include mood
disturbances, severe depression, and schizophrenia (Lågas and
Juvonen, 2001; Valenti et al., 2008, 2011; Noh et al., 2014; Ho
and Mondry, 2015; Di Donato et al., 2017). Finally, 40% of
symptomatic cases report apathy which drastically impacts the
quality of life of CADASIL patients (Reyes et al., 2009). The final
stage of CADASIL progression is dementia, but cognitive decline
starts years before (Brookes et al., 2016).

A recessive form of CADASIL exists under the name of
CARASIL. This form of hereditary cSVD is caused by the
mutation of the high-temperature requirement A serine peptidase
1 (HTRA1) gene which has two major functions, degrading

various substrates and inhibiting TGF-β1 signaling pathway that
is involved in various processes namely angiogenesis and BBB
formation via pericyte-endothelial cell crosstalk (Oka et al., 2004;
Hara et al., 2009; Shiga et al., 2011; Akhtar-Schaefer et al., 2019;
Kandasamy et al., 2020). HTRA1 is expressed in various brain
cells comprising endothelial cells and VSMCs (De Luca et al.,
2003; Oka et al., 2004; Campioni et al., 2010; Tennstaedt et al.,
2012; Tiaden and Richards, 2013). Loss of HTRA1 function
results in increased TGF-β1 availability and thereby signaling,
leading to vascular fibrosis and extracellular matrix synthesis,
which jointly cause microvascular degeneration, CBF reduction,
and neurogenesis alterations (Wyss-Coray et al., 2000; Tarkowski
et al., 2002; Gaertner et al., 2005; Yamamoto et al., 2011; Zhang
et al., 2012; Martinez-Canabal et al., 2013; Beaufort et al., 2014;
Friedrich et al., 2015). Moreover, the mutation has been shown to
be associated with impaired pericyte proliferation, accumulation
of protein within the vessel walls, MMPs activity, and BBB
permeability (Joutel et al., 2016; Baron-Menguy et al., 2017;
Ikawati et al., 2018; Marini et al., 2020). Cognitive decline begins
early compared with CADASIL, as well as gait disturbances,
lower back, pain and alopecia (Shiga et al., 2011; Marini et al.,
2020).

Fabry’s disease is an X-inherited rare disorder that belongs
to the family of lysosomal storage diseases and is caused by a
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FIGURE 2 | Scheme illustrating the mechanisms underlying VaD pathobiology. Several vascular risk factors are implicated in orchestrating pathological responses
leading to VaD: (i) BBB breakdown involves the impairment of TJs and degradation of BM formed by ECM proteins via MMP-9 activity. Plasma MMP-9 levels
constitute an effective prognostic marker for a poor neurological outcome; (ii) Post-stroke neuroinflammation comprises extravasation of peripheral immune cells and
secretion of inflammatory mediators (e.g., CRP, TNF-α, IL-1β, IL-6, IFN-γ), as well as ROS generation and glial activation, accompanied by cerebral Aβ aggregation;
(iii) Atherosclerosis comprises the accumulation of lipids and the calcification of immune cells into the intima, leading to vessel occlusion and hypoperfusion. This
condition is associated with the generation of ROS that causes chronic inflammation; (iv) CAA is associated with the degeneration of VSMCs and vascular Aβ

aggregation due to impaired clearance; (v) CADASIL is associated with NOTCH3 aggregation, causing endothelial cell swelling and pericyte degeneration and
subsequently CBF impairment; and (vi) Exposure to air pollution, which implies PM infiltration into the brain, exacerbates BBB breakdown and neuroinflammation.
VaD, vascular dementia; BBB, blood-brain barrier; TJs, tight junctions; BM, basement membrane; ECM, extracellular matrix proteins; MMP-9, matrix
metalloproteinase-9; CRP, C-reactive protein; TNF-α, tumor necrosis factor-α; IL-1β/6, interleukin-1β/6; IFN-γ, interferon-γ; ROS, reactive oxygen species; Aβ,
amyloid-β; CAA, cerebral amyloid angiopathy; VSMCs, vascular smooth muscle cell; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy; NOTCH3, neurogenic locus notch homolog protein-3; CBF, cerebral blood flow; PM, particulate matter; GLUT1, glucose transporter-1;
ABCB1, ATP binding cassette subfamily B member-1; VCAM, vascular cell adhesion protein; ICAM, intercellular adhesion molecule; TLR4, Toll like receptor-4;
TREM2, triggering receptor expressed on myeloid cells-2; GFAP, glial fibrillary acidic protein; RAGE, receptor for advanced glycation endproducts; ET-1,
endothelin-1; iNOS, inducible nitric oxide synthase; OPC, oligodendrocyte progenitor cell. Created with BioRender.com.

mutation in the α-galactosidase (GAL)A gene that encodes for α-
GAL enzyme that plays a key role in sphingolipid metabolism
(El-Abassi et al., 2014). The mutation causes deficiencies in α-
GAL activity that results in the accumulation of sphingolipids
in various organs and tissues including the vessels (Rolfs et al.,
2013). The cerebrovascular complications in Fabry’s disease arise
from peripheral neuropathy and are associated with mild to
severe headache, vertigo, transient ischemic attacks, ischemic
stroke, intracerebral hemorrhage, and VaD (Okeda and Nisihara,
2008). Furthermore, deposition of toxic metabolites within
the vasculature and VSMCs lead to ischemia, vessel stenosis,
occlusion, and dilation with local changes in CBF (Shimotori
et al., 2008). The disease is more severe in men compared
to women and is often present with infantile neuropathy,
gastrointestinal symptoms, corneal opacity, hearing loss, and

angiokeratoma (Sims et al., 2009; Schiffmann, 2015; Marini
et al., 2020). Brain structural damage and symptoms exacerbate
with age.

Collagen IV, which exists as a heterodimer derived from the
transcription of COL4A1 and COL4A2 genes, is an essential
component of the vascular BM. Mutations in these two
genes are associated with microangiopathies in several organs
(Germain et al., 2019; Marini et al., 2020). More precisely,
COL4A1 mutation is responsible for ocular, renal, muscular,
and cerebral deficits (Vahedi and Alamowitch, 2011; Marini
et al., 2020). Furthermore, cerebral microangiopathies have been
shown to affect half of the carriers of this mutation. WMH,
dilation of the perivascular spaces, lacunar infarctions, and
microbleeds have been reported as well (Vahedi andAlamowitch,
2011). Pontine autosomal dominant microangiopathy and
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leukoencephalopathy (PADMAL) syndrome is a specific form
of cerebral microangiopathies associated with the COL4A1
mutation (Verdura et al., 2016), and is associated with an
overexpression of the gene with the absence of protein
misfolding. Patients with this syndrome have dysarthria, ataxia,
and stroke as well as mood disorders and dementia. On the
other hand, COL4A2 mutation is associated with an increased
prevalence of lacunar ischemic stroke and deep intracerebral
hemorrhages (Verdura et al., 2016). In contrast to COL4A1
mutation, COL4A2 mutation impairs the trimerization of
collagen IV due to defects in the α-helix structure, which cause
BM instability, loss of vascular wall integrity, and increased
BBB permeability, mediated by the intra- and extracellular
accumulation of deficient collagen IV (Kuo et al., 2012;
Meuwissen et al., 2015; Verdura et al., 2016; Zhang et al., 2017;
Malik et al., 2018; Germain et al., 2019).

Forkhead Box C1 (FOXC1) is highly expressed in pericytes. Its
expression plays an important role in controlling endothelial cell
proliferation and vascular stability. FOXC1mutation reproduces
some of the events reported upon COL4A1 mutation, especially
the ischemic infarctions, and cerebral microangiopathies that
lead to WMH, which are visible in neuroimaging (French et al.,
2014). The retinal vasculopathy with cerebral leukodystrophy
(RVCL) syndrome includes three pathological conditions: (i)
cerebral retinal vasculopathy (CRV); (ii) hereditary vascular
retinopathy (HRV); and (iii) hereditary endotheliopathy with
retinopathy, nephropathy, and stroke (HERNS). Patients with
these syndromes possess a mutation in three prime repair
exonuclease (TREX)-1 that encodes for a DNA exonuclease
(Stam et al., 2016). This mutation causes a defect in apoptosis
and INF signaling (Rice et al., 2015; Marini et al., 2020). All
characteristics of the cerebral microangiopathies are found in
RVCL patients who report the following symptoms: neurological
deficits, migraines, cognitive deficits, psychiatric disorders, and
seizures (Stam et al., 2016; Marini et al., 2020).

Environmental Risk Factors: Air Pollution
The increasing interaction with the environmental risk factors
associated with human activities has a significant impact on
health due to the exposure to various hazardous pollutants.
Currently, environmental factors are directly implicated in
the etiology and progression of diverse pathologies, including
brain diseases. Indoor and outdoor air pollution is among the
environmental factors that play a particularly important role
in the deterioration of vascular health (Block and Calderón-
Garcidueñas, 2009). Indeed, air pollution, which is defined as
the release of an amalgam of pollutants into the atmosphere,
has been reported to increase the prevalence of cardiovascular,
cerebrovascular, and respiratory diseases, as well as cancer
(Campbell et al., 2005; Schwartz et al., 2005; Calderón-
Garcidueñas et al., 2007; Hartz et al., 2008; Block and Calderón-
Garcidueñas, 2009; Mills et al., 2009; Rozemuller et al., 2012;
Cho et al., 2018; Paul et al., 2019). Epidemiological studies
have indicated that nearly one-third of the global stroke
burden and about one-fifth of the global dementia burden,
including VaD, are attributable to air pollution (Feigin et al.,
2016; Azarpazhooh and Hachinski, 2018; Béjot et al., 2018).

Furthermore, numerous studies have outlined a link between
high levels of air pollutants, chronic brain inflammation, and
neurodegeneration (Campbell et al., 2005; Schwartz et al., 2005;
Calderón-Garcidueñas et al., 2007; Hartz et al., 2008; Block and
Calderón-Garcidueñas, 2009; Mills et al., 2009; Rozemuller et al.,
2012; Paul et al., 2019). These effects are mainly attributable to
the exposure to fine particulate matter (PM), and more precisely
to PM of 2.5 microns or less in diameter (PM2.5). Indeed, the
experimental findings have indicated that UFPs could reach the
brain through different routes, including the intranasal cavity,
where they act as an inflammatory mediators, thus deregulating
the function of cells forming the neurovascular unit (Oberdörster
et al., 2004; Peters et al., 2006). In particular, exposure to PM
leads to impaired olfactory function, one of the initial atypical
symptoms that emerge in individuals affected by different forms
of dementia (Campbell et al., 2005; Schwartz et al., 2005;
Calderón-Garcidueñas et al., 2007; Hartz et al., 2008; Block and
Calderón-Garcidueñas, 2009; Mills et al., 2009; Rozemuller et al.,
2012; Paul et al., 2019). The correlation between air pollution
and dementia, including VaD and AD, was highlighted in
various epidemiological studies relying mostly on cohort studies
in polluted regions (Åström et al., 2021). The Betula cohort
revealed an association of dementia incidence, AD in particular,
with traffic-related air pollution (TRAP; Oudin et al., 2019).
Moreover, studies have found that exposure of the elderly to air
pollution, notably PM10 and PM2.5 was associated with cognitive
decline (Wu et al., 2015). In an interesting case-control study, it
was reported that elevated long-term PM10 levels were associated
with a significantly increased risk of AD and VaD prevalence in
the elderly. A dose-response relationship between PM10 exposure
and the risk of AD and VaD was reported (Wu et al., 2015).

Impact on Endothelial Functions
Various studies have investigated the impact of air pollutants,
and more specifically PM, on endothelial functions. For instance,
exposure of isolated rat brain capillaries to diesel exhaust
particles (DEP) altered BBB function through oxidative stress
generation and proinflammatory cytokine production, which
jointly induced the expression of adhesion molecules that
exacerbate infiltration of immune cells into the brain (Hartz
et al., 2008). Exposure to DEP deregulated the expression of
several transporters and receptors that are critically involved
in BBB functionality namely ABCB1, multidrug-resistance
associated proteins (MRP)1, MRP2, MRP4, breast cancer
resistance protein (BCRP), glucose transporter (GLUT)1, and the
metabolizing enzyme glutathione S-transferase (GST)π (Hartz
et al., 2008). Several reports have demonstrated an increased
BBB permeability following exposure to a mixed vehicular
emission, translated essentially by deregulation of the TJs
(Rojas et al., 2011; Oppenheim et al., 2013; Bernardi et al.,
2021). For instance, human brain microvascular endothelial
cells in culture exposed to nanoparticles of aluminum oxide
exhibit reduced cell viability, altered mitochondrial function,
increased oxidative stress, and diminished expression of the
TJs proteins claudin-5 and occludin (Chen et al., 2008; Block
and Calderón-Garcidueñas, 2009). Interestingly, epidemiological
studies have outlined a strong correlation between air pollution
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and neuroinflammation in highly exposed residents (Calderón-
Garcidueñas et al., 2008). Indeed, these studies reported an
upregulation of some inflammatory markers, such as expression
of cyclooxygenase (COX)-2 and IL-1β, as well as infiltration
of immune cells into the olfactory bulb (OB), frontal cortex,
substantia nigrae, and vagus nerves (Calderón-Garcidueñas et al.,
2008). Importantly, most of the inflammatory responses were
concentrated at the vasculature translated by activation of NF-
κB pathway in brain endothelial cells, accompanied by oxidative
stress, Aβ42 immunoreactivity, trafficking of inflammatory cells
into the perivascular space, and an altered BBB (Calderón-
Garcidueñas et al., 2008). In line with these observations,
direct exposure of brain endothelial cells in culture to PM2.5
deregulated TJs and increased permeability and monocyte
transmigration across the endothelial monolayer (Liu F. et al.,
2015). In addition, exposure to both PM2.5 and PM10 induced
the activation of endothelial cells accompanied by an enhanced
adhesion of U937 monocytic cells to the endothelial monolayer
(Montiel-Dávalos et al., 2007). Interestingly, exposure to PM2.5
also induced ICAM-1 expression, whereas exposure to PM10
induced expression of E-selectin and P-selectin (Montiel-Dávalos
et al., 2007; Figure 2).

In vivo experiments in which mice were exposed to a mixed
vehicular emission, a combination of gasoline and diesel engine
exhausts, the animals exhibited altered BBB integrity through
the deregulation of the TJs protein, namely claudin-5 and
occludin (Oppenheim et al., 2013). This was accompanied by an
augmentation of inducible nitric oxide synthase (iNOS) levels,
an increase in the production of IL-1β in the parenchyma,
and deregulation of ABCB1 transport activity (Oppenheim
et al., 2013). Moreover, exposure to PM in vitro and in vivo
has been shown to stimulate the re-localization of the TJs
protein ZO-1 from the cell membrane and reduce its protein
level (Wang et al., 2012). Importantly, PM mediated the
intracellular mobilization of calcium (Ca2+) dependently upon
ROS, activating calpain that is implicated in ZO-1 degradation
and disruption of the endothelial barrier (Wang et al., 2012).
Using a 3D human in vitro BBB model, indoor nanoscale
particulate matter (INPM) was shown to translocate across the
BBB and accentuate inflammation by inducing ROS (Li et al.,
2020). This induction was followed by abnormal nuclear reactor
factor (NRF)-2 expression and a disruption of the kelch ECH
associating protein (KEAP)-1/antioxidant response elements
(ARE) pathway which is involved in supporting cells to overcome
stress (Li et al., 2020). Interestingly, exposure of rodents to urban
PM increased the levels of ET-1 mRNA and reduced TNF-α
mRNA levels in the cerebral hemisphere and the pituitary gland.
These results suggest that the cerebrovascular effects of urban
pollutants are associated with the modulation of gene expression
involved in the regulation of vasoconstriction in the brain and
pituitary gland (Benatti et al., 1993; Thomson et al., 2007).

Exposure to PM2.5 has been shown to increase the prevalence
of carotid artery stenosis (CAS), a well-established risk factor for
ischemic stroke, correlating with an increased BBB permeability
(Newman et al., 2015; Szarmach et al., 2017). In line with
these observations, a strong association between air pollution
with systemic brain inflammation was revealed in children

living in polluted areas, associated with short-term memory
deficits, prefrontal WMH, and BBB disruption (Calderón-
Garcidueñas et al., 2016). The same study reported a leaking
vascular network, degeneration of pericytes, VSMCs, and
endothelial cells, thickening of the BM, and reduced perivascular
astroglial coverage in the prefrontal white matter of dog
brains (Calderón-Garcidueñas et al., 2016). Exposure to PM2.5
has been demonstrated as well to accelerate atherosclerosis
development through induction of vascular dysfunction as well
as promotion of coagulopathies, which were accompanied by
a strong inflammatory response and lipid abnormalities (Liang
et al., 2020). Finally, exposure of ApoE-deficient mice to TRAP,
mixed vehicle emissions, induced the cerebral expression of
ICAM-1 and the release of pro-inflammatory mediators, such as
TNF-α and IL-1β (Adivi et al., 2021).

Impact on the Dynamics of Astrocytes and
Oligodendrocytes
Evidence indicates that astrocytes respond to PM in a context-
dependent manner (Allen et al., 2014). For instance, early
postnatal exposure to ambient UFPs decreased GFAP
immunoreactivity in male subjects and increased GFAP
expression as well as other neuroinflammation markers in
females (Allen et al., 2014). Exposure of male and female
rodents during gestation and early postnatal development to
TRAP attenuated astrogliosis specifically in the dentate gyrus
(DG) associated with reduced GFAP immunoreactivity, which
remained unchanged in CA1 and CA3 regions (Patten et al.,
2020). Previous findings have shown that maternal exposure
to carbon black nanoparticles (CB-NP) induced astrogliosis in
the cortex of rodents, affecting the interaction of the astrocyte
endfeet with the endothelium and perivascular macrophages
(Onoda et al., 2017). Interestingly, intranasal delivery of PM2.5
to male rodents subjected to ischemic stroke exacerbated
astrocytic reactivity via GFAP activation and iNOS induction,
aggravating post-stroke neurobehavioral impairments (Chen
et al., 2016). In line with these results, rodents exposed to
PM for a prolonged period exhibited altered neuronal and
astrocytic functions via impairment of mitochondrial activity
(Araújo et al., 2019). Likewise, exposure of rodents to natural air
pollution sources, such as volcanic-derived particles, increased
GFAP immunoreactivity in astrocytes (Camarinho et al., 2019;
Navarro et al., 2021). Moreover, exposure of rodents to low
doses of CB-NP induced endoplasmic reticulum (ER) stress in
perivascular macrophages and reactive astrocytes, specifically
around the vasculature of offspring animals, associated with
the accumulation of β-sheet rich misfolded proteins (Onoda
et al., 2020). Cell-based assays have shown that exposure of
astrocytes to PM activated janus kinase (JAK)-2/STAT-3 and
p38/JNK/ERK pathways in reactive astrocytes triggering iNOS
induction and IL-1β production (Li et al., 2016). In this regard,
PM has been reported to increase the expression and release of
proinflammatory mediators through activation of the NF-κB
signaling pathway (Li et al., 1999; Gómez-Budia et al., 2020).

Furthermore, exposure to UFPs altered adult OPCs turnover
and survival of mature oligodendrocytes (OLs), accompanied
by increased oxidative stress and decreased total antioxidant
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capacities (TAC) that impair the remyelination capacity of the
brain (Kim J. Y. et al., 2020). Furthermore, prenatal exposure
to concentrated ambient particles (CAPs), which were defined
as UFPs, promoted a premature maturational shift in OLs in
the corpus callosum (CC), followed by hypermyelination (Klocke
et al., 2018). Interestingly, females showed significant alterations
in oligodendrocytogenesis in the CC (Klocke et al., 2018).
Finally, in a mouse model of lysolecithin-induced demyelination
of the subcortical white matter, exposure to PM2.5 hampered
remyelination and disrupted oligodendroglia differentiation
(Parolisi et al., 2021).

Impact on Microglial Reactivity and Consequences
on Neurons
In response to air pollution, microglia are activated through
the upregulation of several proinflammatory mediators that
affect neuronal function (Gómez-Budia et al., 2020). Microglia
respond to air pollution by adopting an amoeboid shape in vitro
(Cole et al., 2016; Roqué et al., 2016; Mumaw et al., 2017), as
well as in vivo (Araújo et al., 2019). Indeed, mice exposed to
DEP exhibited reduced adult neurogenesis through activation
of microglia (Coburn et al., 2018). In contrast, attenuating
microglial reactivity hampered neuroinflammation and oxidative
stress (Coburn et al., 2018). Cell-based assays showed that
exposure of BV-2 immortalizedmicroglial cell to PM2.5 increased
mRNA expression of various proinflammatory markers, namely
IL-6, IL-1β, TNF-α, iNOS, COX-2, TREM2, and TLR2/4,
while reducing mRNA expression of key anti-inflammatory
markers, such as IL-10 and Arginase (ARG)-1 (Kim R.-E. et al.,
2020). In parallel, exposure of rodents to DEP for a long
period triggered the activation of microglia in the nuclei of
the solitary tract (NTS), accompanied by ER dilation and
mitochondrial vacuolization in the medulla, hence outlining
structural alterations of the neuronal network (Chen et al., 2021).
Interestingly, rodents exposed to DEP for a long period showed
an induced ionized calcium-binding adaptor molecule (IBA)-
1 expression in the brain (Levesque et al., 2011). Interestingly,
microglial reactivity was accompanied by an increased mRNA
expression of TNF-α, IL-6, and macrophage inflammatory
protein (MCP)-1α in the midbrain, cortex, and OB, while IL-
1β was expressed particularly in the midbrain (Levesque et al.,
2011). Mice exposed to PM also triggered the induction of
mRNA expression of TLR4, MyD88, TNF-α, and tumor necrosis
factor receptor (TNFR)-2 in microglia (Woodward et al., 2017a).
Activation of the latter was further confirmed through an
increased intracellular expression of inflammatory mediators,
such as COX-2, NF-κB, prostaglandin E2 (PGE2), and iNOS
both in vitro and in vivo (Babadjouni et al., 2018; Chen et al.,
2018). Using cell-based assays, TNF-α induction in microglia
upon PM exposure inhibited neurite outgrowth (Cheng et al.,
2016). Inhibition of NRF-2 activity prior to exposure of BV-2
microglial cells to PM2.5 attenuated cell viability, induced ROS
generation, and stimulated NF-κB pathway, outlining NRF-2 role
in mitigating PM deleterious effects (Chen et al., 2018).

Importantly, in vivo experiments showed that exposure
to DEP in TREM2−/− mice accentuated IL-1β expression
(Greve et al., 2020). PM has been demonstrated to impact

neuron-glial crosstalk. Acute exposure of adult mice to PM2.5
increased the levels of lipoperoxidation and proinflammatory
cytokines in the brain and activated microglia, accompanied
by reduced neurogenesis in the subgranular zone (SGZ) and
subventricular zone (SVZ; Bernardi et al., 2021). Neuronal cell
cultures exhibited reduced viability upon exposure to PM2.5
associated with increased release of glutamate (Liu F. et al.,
2015). Prior treatment of cells with the N-methyl-D-aspartate
(NMDA) receptor mitigated PM2.5-mediated neuronal loss
(Liu F. et al., 2015). Moreover, neuronal cultures displayed
dopaminergic neurotoxicity upon exposure to DEP only in
presence of microglia, which was associated with elevated
levels of ROS (Block et al., 2004). Co-culture of neurons
and microglia exposed to PM2.5 in presence of oligomeric
oAβ exacerbated IL-1β and ROS release aggravating oAβ-
induced neuronal injury and inflammation (Wang et al.,
2018). PM have been shown to directly impact neuronal
function. For instance, exposure of rodents to nano PM caused
hippocampal neurite atrophy and decreased expression of
myelin basic protein (MBP), accompanied by increased TNF-
α mRNA expression (Woodward et al., 2017b). In this regard,
epidemiological studies have outlined a strong correlation
between the levels of PM in air and neuronal chromatolysis
and satellitosis in exposed dogs, associated with cortical
neurons degeneration, and neurofibrillary tangle formation
(Calderón-Garcidueñas et al., 2002).

Interestingly, epidemiological studies comprising elderly
women revealed that residence in places contaminated with
high levels of fine PM increases the risks for global cognitive
decline and all-cause of dementia by 81 and 92%, respectively,
with stronger adverse effects in ApoE4 carriers (Cacciottolo
et al., 2017). Experimental findings obtained from female AD
mouse models (5xFAD; Familial AD) expressing either ApoE3 or
ApoE4 mice that were exposed to urban nano PM for 15 weeks
showed increased Aβ plaques and soluble Aβ oligomers, which
were associated with neuronal changes in the hippocampus
(Cacciottolo et al., 2017). These findings were confirmed in vitro
upon exposure of neuroblastoma cells (N2a-APP/swe) to nano
PM translated by an enhanced pro-amyloidogenic processing
of the APP, explaining the elevated cerebral Aβ production
(Cacciottolo et al., 2017). Furthermore, long-term exposure to
ambient air pollution was found to be associated with rapid
cognitive decline in aged adults, where ApoE4 carriers exhibited
the fastest cognitive decline (Kulick et al., 2020; Figure 2).

Further in vivo experimental investigations implicating
exposure to TRAP nano PM showed an increased production
of Aβ peptides, associated with oxidative damage (Cacciottolo
et al., 2020). Indeed, exposure of J20-APPswe mice, an AD
mouse model, to nano PM for 150 h revealed exacerbated
lipid oxidation and pro-amyloidogenic processing of APP in
lipid raft fractions compared to controls (Cacciottolo et al.,
2020). These observations were further confirmed in vitro using
N2a-APPswe cells exposed to nano PM (Cacciottolo et al.,
2020). Importantly, the link between air pollution and HDL
was highlighted in the Multi-Ethnic Study of Atherosclerosis
Air Pollution (MESA Air) study showing that exposure to
air pollution was significantly associated with low levels of
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HDL (Bell et al., 2017). In this regard, ApoE-deficient mice
exposed for 2 weeks to DEP, exhibited high systemic pro-oxidant
effects associated with dysfunctional HDL (Yin et al., 2013).
These observations would indicate that PM exposure could be
responsible for the attenuated HDL protective effects against
atherosclerosis (Yin et al., 2013).

CONCLUSION AND PERSPECTIVES

Through this review, we aimed to highlight the structural
and functional neurovascular alterations underlying VaD
pathobiology. The epidemiological, clinical, and experimental
investigations are indicating that the long-term outcomes of early
pathophysiological events impacting neurovascular functions
upon cerebrovascular disorders have major consequences on
imitating a cascade of events that lead to VaD. Moreover,
the recent findings are outlining air pollution as a major
vascular risk factor that is directly implicated in promoting
neurovascular impairments associated with VaD. Given the
heterogeneity of cerebrovascular disorders, which include stroke,
genetic and sporadic microangiopathies, combined with the
diverse effects of environmental factors, a better understating
of the short- and long-term remodeling processes at the
neurovascular unit is urgently required to allow getting
new insights into VaD pathobiology. Such knowledge will
allow the identification of key ‘‘targetable’’ mechanisms for
therapeutic purposes.

Recent findings are suggesting that BBB disruption occurs
in some cases for a prolonged period beyond the acute and
subacute phases after stroke (Bernardo-Castro et al., 2020).
A prolonged, yet subtle, disruption of the BBB could trigger
a cascade of events that lead to VaD. For instance, high
expression levels ofMMPs, themainmediator of BBB disruption,
are significantly associated with cognitive deficits (Yang and
Rosenberg, 2011). However, targeting MMPs is a double-
edged sword as while preserving the BBB in the acute and
sub-acute phase, its inhibition impairs neurovascular adaptation
in the chronic phase, thus impeding brain plasticity (Yang and
Rosenberg, 2011). More promising appears to be the inhibition
of beta-site APP cleaving enzyme (BACE)1 that seems to
protect endothelial cell integrity in the context of CADASIL and
AD (Chacón-Quintero et al., 2021). In the same way, rodent
models of aging suggest that the mitochondrial overexpression
of catalase improves diminish vascular impairment and benefits
neurovascular coupling (Csiszar et al., 2019).

On the other hand, uncontrolled post-stroke
neuroinflammation, especially excessive microglial activation, is
associated with cognitive deficits (Guruswamy and ElAli, 2017;
Gefen et al., 2019; Jayaraj et al., 2019; Zhang et al., 2021). In
this regard, strategies aiming to mitigate neuroinflammation
via modulation of microglia could attenuate cognitive decline
related to stroke (Guruswamy and ElAli, 2017; Dzyubenko et al.,
2018; Jayaraj et al., 2019). In this regard, evidence suggests
that the prominent microglial regulator, insulin-like growth
factor (IGF)-1, reduces gliosis while preserving brain volume
and myelination, as well as motor performance and memory
when administered intranasally in aged mice (Farias Quipildor

et al., 2019). Efficient immunomodulatory approaches capable of
fine-tuning microglial activation are still to be developed.

Importantly, the emergence and turnover of stroke-mediated
proteinopathies are associated with BBB disruption and
neuroinflammation. Although the role of cSVD is critically
important in the etiology of VaD, there is still a huge gap
in the literature as to our understanding of the underlying
mechanisms. This is due to the fact that the current knowledge is
obtained either from genetic or non-clinically relevant sporadic
animal models. Indeed, the majority of cSVD cases are sporadic
and associated with diverse risk factors, as such, it is critically
important to develop animal models that replicate some of
the pathological features associated with VaD. However, the
overwhelming findings indicate the loss-of-function on the local
cerebrovascular network caused a central role in initiating a
pathological cascade of events that lead to altered neuro-glial
functions, and thus subsequently dementia (Rouhl et al., 2012;
Shoamanesh et al., 2015; Fu and Yan, 2018; Li et al., 2018; Jian
et al., 2020).

Air pollution has emerged as a significant risk factor for
cerebrovascular and neurodegenerative disorders (Wu et al.,
2015; Åström et al., 2021). It is becoming clear that exposure to
PM, one of the most deleterious air pollutants, increases the risk
of chronic neuroinflammation that leads to dementia (Wu et al.,
2015; Åström et al., 2021). Cell-based assays have demonstrated
that PM acts as a powerful inflammatory and oxidative stress
mediator in various brain cell types. Interestingly, PM exposure
seems to amplify the pathological responses underlying VaD
pathobiology. Although the impact of PM on neurovascular
functions is evidenced in vitro, little is known about its role
in mediating neurovascular impairments in vivo. Future studies
should consider investigating the consequences of PM exposure
as a comorbid condition in the design of preclinical experiments.

As previously mentioned, besides PM, various modifiable
vascular risk factors are recognized to impact VaD. For
instance, stroke and cSVD share common risk factors such
as hypertension, atherosclerosis, obesity, atrial fibrillation,
diabetes, dyslipidemia, high homocysteine, metabolic syndrome,
smoking, as well as cardiac and carotid arterial disease
(Barnes and Yaffe, 2011; O’Brien and Thomas, 2015; Kalaria
et al., 2016; Tariq and Barber, 2018). Given their central
role, various preventive approaches have been developed and
adopted to attenuate the impact of this triad of vascular
on VaD. Such approaches are exemplified by the landmark
multidomain Finnish Geriatric Intervention Study to Prevent
Cognitive Impairment and Disability (FINGER), which has
been shown to enhance all cognitive sub-domains through
a multidomain lifestyle intervention that include dietary
counseling, physical exercise, cognitive training, and vascular
and metabolic risk monitoring for a period of 2 years
(Ngandu et al., 2015; Kivipelto et al., 2020). Furthermore,
knowing the detrimental role of high blood pressure in VaD
prevalence, the Systolic Blood Pressure Intervention Trial
(SPRINT) and its sub-study the Memory and Cognition in
Decreased Hypertension (MIND) were established with an
emphasis on investigating the consequences of lowering systolic
blood pressure. Although the incidence of dementia was not
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improved, the trial reported a reduction of mild cognitive
impairment (MCI) and MCI composite in subjects with lower
blood pressure. Interestingly, these observations were associated
with a reduction of WM lesion volumes (Kjeldsen et al.,
2018; Peters et al., 2019). Despite that, each trial discloses
important limitations, yet the impact of modifying main VaD
risk factors was shown to allow the development of efficient
interventions. Further research is needed for longer periods
with a more representative population to lessen the limitations
and improve the efficiency of interventions aiming to attenuate
dementia prevalence.

Finally, a deep analysis of the current scientific knowledge
outlines brain pericytes as a major effector in the pathobiology
of VaD. Through their spatial localization, pericytes play a
central role in integrating and processing signals from their
milieu to generate critical neurovascular functions, which include
BBB maintenance, CBF modulation, vascular stabilization, and
immunomodulation (Zlokovic, 2011; Hermann and ElAli, 2012).
Following a stroke, pericytes undergo cell death at the ischemic
core and get activated in the peri-lesion site where they
detach from the vasculature (Zlokovic, 2011; Hermann and
ElAli, 2012). Importantly, it has been reported that even after
successful recanalization, pericytes located at the peri-lesion
site remain contracted impeding the capillary microcirculation,
which leads to vascular constriction and chronic hypoperfusion
(Dalkara, 2019). Moreover, microcirculation of the white matter
was disrupted upon pericyte degeneration leading to the
accumulation of toxic blood-derived fibrotic deposits within
the vasculature, which promotes vascular fibrosis, accompanied
by a reduction in the regional CBF (Montagne et al., 2018).
These changes are supposed to be directly implicated in
the pathogenesis of diffuse WMD associated with loss of

oligodendrocytes and subsequently myelinated axons (Montagne
et al., 2018). The findings indicate that pericyte degeneration
plays a major role in the pathogenesis, and thereby therapies,
of WMD associated with cSVD (Montagne et al., 2018).
Furthermore, the generation of pericytes is translated by elevated
levels of the soluble-platelet derived growth factor receptor
(PDGFR)β (sPDGFRβ) in the CSF, strongly correlating with BBB
breakdown, CBF reduction, and cognitive decline (Sweeney et al.,
2020). Therefore, decoding the pericyte reactivity to stressors
related to the vascular risk factors constitutes a promising avenue
that might lead to achieving major breakthroughs in getting
new mechanistic insights in the pathobiology of VaD and in
developing novel therapeutic interventions.
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