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Abstract 

Glial scar formation represents a fundamental response to central nervous system 

(CNS) injury. It is mainly characterized by a well-defined spatial rearrangement of 

reactive astrocytes and microglia. The mechanisms underlying glial scar formation have 

been extensively studied, yet quantitative descriptors of the spatial arrangement of 

reactive glial cells remain limited. Here, we present a novel approach using point pattern 

analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of 

reactive glial cells after experimental ischemic stroke in mice. We provide open and 

reproducible tools using R and Julia to quantify spatial intensity, cell covariance and 

conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which 

collectively disentangle the arrangement patterns of the glial scar. This approach 

unravels a substantial divergence in the distribution of reactive astrocytes and microglia 

after injury that conventional analysis methods cannot fully characterize. PPA and TDA 

are valuable tools for studying the complex spatial arrangement of reactive glia and 

other nervous cells following CNS injuries and have potential applications for evaluating 

glial-targeted restorative therapies. 
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Introduction 

Glial scar formation represents a crucial response to central nervous system (CNS) 

injuries, such as traumatic brain injury and ischemic stroke (Bradbury and Burnside 

2019).  The scar is primarily composed of reactive astrocytes, activated microglia, and 

polydendrocytes/NG2+ cells, which rearrange spatially to establish a demarcated, yet 

dynamic, barrier around the lesioned tissue (Wanner et al. 2013; Hackett and Lee 2016; 

Bellver-Landete et al. 2019; Zhang et al. 2022). This enables compartmentalization of 

the injured tissue  (Conforti et al. 2022) to limit the spread of toxic and inflammatory 

mediators towards healthy regions (Voskuhl et al. 2009; Yoshizaki et al. 2021). The 

organization of reactive glia affects the structural and functional integrity of the lesioned 

tissue, making processes such as axonal sprouting and neurovascular repair a vital 

target for therapeutic interventions  (Anderson et al. 2016; Fu et al. 2020).   

In recent years,  in vivo and in vitro models of CNS injuries have identified several 

molecular and cellular markers associated with scar formation (Yang et al. 2020), 

including glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor 

molecule-1 (IBA1)  (Kamphuis et al. 2015; Schacke et al. 2022; Lu et al. 2021). 

Together with the massive arrangement of reactive glial cells in the infarct core, these 

markers presage scar formation in various CNS injuries, including ischemic 

stroke (Buscemi et al. 2019; Manrique-Castano et al. 2021; Ito et al. 2001). However, 

current methods for analyzing glial scar formation primarily rely on qualitative 

assessments that lack spatiotemporal resolution and limit the examination of cellular 

arrangement patterns. 

To address these limitations, we developed a comprehensive implementation of point 

pattern analysis (PPA)  (Parra 2021; Jafari-Mamaghani, Andersson, and Krieger 2010; 

Davis et al. 2017), spatial clustering (Prodanov, Nagelkerke, and Marani 2007), and 

topological data analysis (TDA) (Bhaskar, Zhang, and Wong 2021; Masoomy et al. 

2021; Bonilla, Carpio, and Trenado 2020) for the assessment of the spatiotemporal 

dynamics of glial scar formation after experimental ischemic stroke.  PPA allows to 

determine the distribution patterns of objects in a given observation window through 

different metrics. It has multiple applications in ecology (Malavasi et al. 2023), 
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epidemiology (Scarpone et al. 2020), and cancer biology (Maisel et al. 2022; Kaufmann 

et al. 2021). Conversely, TDA uses the tools of algebraic topology to extract patterns 

from complex data sets or point clouds,  which may be difficult to see using traditional 

methods. This includes shape, structure, and connectivity (Vipond et al. 2021; Lawson 

et al. 2019). A central method in TDA is persistent homology (PH), which tracks the 

evolution of topological features, such as connected components, loops, voids, and 

higher-dimensional holes (Amézquita et al. 2020; Townsend et al. 2020). Recently, TDA 

has been suitable for modeling collective cell motion and migration (Bhaskar, Zhang, 

and Wong 2021; Bonilla, Carpio, and Trenado 2020),  neuronal morphology (Kanari et 

al. 2017), and branching patterns in vascularization (Nardini et al. 2021). However, no 

direct applications of PPA/TDA exist for analyzing the dynamics of cell rearrangement 

following brain injury, which is critical for assessing scar formation and tissue integrity.  

Our approach provides reproducible pipelines to quantify cell covariance, cell-to-cell 

interactions, and short and long-scale cumulative cell distributions. This allowed us to 

identify the divergent allocation of reactive astrocytes and activated 

microglia/macrophages, revealing a double-layered glial scar with unique dynamics 

throughout the injury that eludes the scrutiny of traditional methods. Furthermore, we 

build a machine-learning model to predict the time post-ischemia based on cell 

positions. We provide the raw data and annotated scripts for R and Julia in a GitHub 

repository to ensure replicability and encourage using PPA and TDA-based analysis for 

glial reactivity in other disease models.   

Materials and Methods 

We share the raw microscopy images, data tables (10.5281/zenodo.8399976), and 

annotated scripts for the full reproducibility of our PPA-TDA analysis 

(https://github.com/elalilab/GlialScar_PPA-TDA_2022). The companion Quarto 

notebook (QN) in the Github repository details all data handling, statistical models, and 

analysis pipelines.  See also the Open Science Framework repository (OSFr) for 

additional material (DOI 10.17605/OSF.IO/3VG8J ).  
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Animals and experimental approach 

The animals were housed in groups of 3-5 per cage and acclimated to standard 

laboratory conditions (12 hours light/dark cycle; Lights on at 7:00 AM and off at 7:00 

PM) with free access to chow and water. Six-month-old C57BL/6J mice (a total of 38) 

were subjected to focal transient cerebral ischemia via middle cerebral artery occlusion 

(MCAo), with an additional group of age/weight-matched mice (n = 5) included as a 

control/reference. Ten animals either died after MCAo or were euthanized according to 

veterinary recommendations, and two animals that did not exhibit signs of cerebral 

ischemia were excluded from the analysis. Animal survival at 5, 15, and 30 days post-

ischemia (DPI) was randomized using the Research Randomizer online tool 

(https://www.randomizer.org/). The experimental procedure is summarized in Suppl. 

Figure 1A. All animal procedures and handling were performed according to the 

Canadian Council on Animal Care guidelines, as implemented by Comité de Protection 

des Animaux de l’Université Laval-3 (CPAUL-3; Protocol # 20-470).   

 

Middle cerebral artery occlusion (MCAo)   

Transient focal ischemic stroke was induced by 30 min MCAo to produce a cortical-

striatal lesion in the territory of the MCA (see Suppl. methods). Mice were anesthetized 

with 1.5% v/v isoflurane and the rectal temperature was maintained at 37.0°C using a 

feedback-controlled heating system. A longitudinal midline incision was made to expose 

the left common carotid artery (CCA). We permanently ligated the lowest visible 

segment of the CCA and placed a temporal loose ligature anterior to the bifurcation 

giving rise to the external carotid artery (ECA) and the internal carotid artery (ICA). 

Ligation of the ECA was avoided to prevent masticatory lesions and to improve animal 

welfare after ischemia (Dittmar et al. 2005). An incision was then made between the 

permanent and temporal ligatures to insert a silicone resin-coated nylon monofilament 

(MCAO suture, Doccol Corporation, Cat# 7022910PK5Re). The monofilament was 

advanced into the CCA to block the MCA fork at the polygon of Willis and tied tightly to 

prevent retraction. After 30 minutes, the monofilament was removed through the entry 
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incision and the upper segment of the CCA was permanently ligated. Finally, the 

cervical incision was sutured and anesthesia was discontinued. Postoperative care was 

provided in the home cage by subcutaneous injection of 1 mL Ringer’s lactate twice 

daily for at least three days or until the preoperative weight was regained. We provided 

wet food and diet gel boost (DietGel® Boost, Clear H2O, Cat #72-04-5022) in the 

bottom of the cage to facilitate feeding. 

 

Brain sectioning and immunolabeling 

Mice were euthanized by transcardial perfusion with 0.9% sodium chloride (NaCl) 

followed by 4% paraformaldehyde (PFA). The brains were removed and post-fixed by 

submersion in 4% PFA during 16-24h. After rinsing and cryoprotection, brains were 

frozen and stored at -80°C  until sectioning with a freezing microtome (Leica 

Biosystems, ON, Canada) (see Suppl. methods). Thirty μm thick coronal sections were 

cut and mounted serially (Suppl. Table 1) onto SuperFrost® Plus slides (Fisher 

Scientific, ON, Canada). We performed routine immunofluorescence staining with 

antibodies against IBA1, NeuN, GFAP, and DAPI (see Suppl. methods).   

 

Brain imaging  

We scanned 6-7 whole brain coronal sections per animal (Suppl. Table 1) at 5x 

magnification using an AxioScan Z1 slide scanner (Carl Zeiss Canada, ON, Canada), 

with the parameters specified in Suppl. Table 2. To enhance cell detection, we 

processed the multichannel images in FIJI (Schindelin et al. 2012)  using the scripts 

available on our GitHub repository. We manually rotated or flipped the images (when 

necessary) and removed interfering brain pieces/artifacts to facilitate alignment with the 

Allen reference atlases. Please refer to Suppl. Figure 1B for a detailed view. 

To examine neuronal and glial distribution at the level of the MCA territory, we imaged 

section 3 (bregma, 0.44 to -0.06) at 10x magnification using a Zeiss Axio Observer.Z1 
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inverted epifluorescence microscope. The acquisition parameters are listed in Suppl. 

Table 3. We acquired a horizontal ROI from the ventricular area to the outer border of 

the dorsolateral cerebral cortex, as depicted in Suppl. Figure 1C. To delineate the 

observation windows for PPA, we sharpened the sections using FIJI and manually 

removed blank regions.   

 

Slice alignment, cell detection, and quantification 

We aligned the 5x magnification whole brain slices to the Allen Mouse Brain Atlas using 

the Aligning Big Brains & Atlases (ABBA) plugin for FIJI, which performs automated 2D 

affine and spline in-plane registrations of brain slices. We used the BigWarp-framed tool 

to correct slice orientation and registration when required. The aligned/registered brain 

slices were then exported to QuPath (Bankhead et al. 2017) to perform unbiased cell 

detection and quantification of NeuN-, GFAP-, and IBA1-expressing cells in the cortex 

(CTX), nuclei (CNU), fiber tracts, midbrain (MB), and inter-brain (IB) using QuPath 

scripts (see GitHub repository). In particular, we used a watershed algorithm and object 

classifiers to select individual nuclei with normal NeuN immunolabeling. In contrast, 

GFAP+ and IBA1+ cells were thresholded for marker expression typical of reactive cells. 

Due to irregular glial morphology and variable size, unbiased detection may include 

whole or stained cell fragments. We also applied comparable cell detection and 

quantification to 10x magnification images at the level of the MCA territory, without 

alignment to the Allen brain atlas.  

In this article, we refer to GFAP+ cells as reactive astrocytes, recognizing that 

progenitors can also express this marker in cell niches such as the ventricular zone. 

Similarly, we refer to IBA1+ cells as activated microglia, knowing that this protein is also 

expressed by some infiltrating immune cells in intra-lesional areas. This aspect does nor 

impact our conclusions since infiltraed IBA1+ cells fulfill similar functions as resident 

IBA1+ cells.   
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Point pattern analysis (PPA) 

We handled cell counts and coordinates obtained from QuPath using R/Rstudio. The 

supplementary QN fully describes the PPA approach using functions from the spatstat 

R-package (Baddeley, Rubak, and Turner 2015) with step-by-step implementation. The 

analyzed point patterns are available in the Zenodo repository.  We performed PPA on 

section # 3 (bregma 0.44 to -0.06) of each brain, which includes the MCA territory 

imaged at 10x. We downsampled to 10% of the detected cells to improve computational 

efficiency and visualization.   

Our PPA approach entails (1) the calculation of the spatial intensity (QN, section 1) to 

identify areas with divergent cell density and the assessment of the distribution of each 

cell type across the glial scar. (2) Quadrant counts to investigate the spatial relationship 

between different cell types using tessellations— a partition of space into non-

overlapping regions (QN, section 5-6). (3) rhohat and multiple point process models 

(mppm) to calculate the relative/conditional intensity (see corresponding QN chapters). 

These nonparametric mppm allow us to estimate spatial distributions without making 

underlying assumptions. (4) Rasterization of the point patterns to create matrices of 

intensity-based gridded data to perform dispersion and distance 

measurements (Hijmans 2023) (QN, Section 7). (5) Calculation of the 

inhomogeneous L-function, which is Besag’s transformation of Ripley’s K-function, to 

assess cell-to-cell interactions within point patterns and deviations from complete spatial 

randomness (CSR) (QN, Section 9). 

 

Topological data analysis (TDA) 

To calculate the PH to point cloud data, we compute Vietoris-Rips filtration from cell 

positions using the GPU-enabled Ripser++ package (Zhang, Xiao, and Wang 2020). 

Additionally, we used a topological machine learning based approach (Hensel, Moor, 

and Rieck 2021) to predict DPI based on cell positions. We first applied persistent 

homology analysis to the point clouds to obtain topological features of the data. 
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Subsequently, we used a supervised learning algorithm, support vector regression 

(SVR) (Ben-Hur et al. 2008) with a radial basis function (RBF) kernel, to predict DPI.  

We evaluated the performance of our approach using a 10-fold cross-validation 

procedure (Dutschmann et al. 2023; Jung 2017). In each fold, we randomly split the 

dataset into training and testing sets, with 80% of the data used for training and 20% for 

testing. We repeated this procedure 10 times, with a different random split each time, 

and computed the mean and standard deviation of the prediction error across the 10 

folds.   

 

Statistical analysis 

In this study, we performed Bayesian modeling and statistical inference using the R-

package brms (Bürkner 2018) and non-parametric modeling with spatstat  (Baddeley 

and Turner 2005; Baddeley, Rubak, and Turner 2015). The parameters are tailored to 

each dataset and specifically defined in the QN, together with model validation. The 

results of each model are reported in Suppl. Tables 4-11.  

We used R-packages ggplot and ggdist to visualize estimates and their 

uncertainty. Density kernels, tessellations, rhohat, and L-functions were plotted 

using spatstat-linked R-base plotting system.  We present the complete posterior 

distributions with half-eye densities and point intervals. The contrast between time 

points (half-eye and point intervals) is evaluated based on a region of practical 

equivalence (ROPE), which indicates the region falling within the intragroup variance 

estimated by the fitted models. We estimated the contrast between time points using 

the emmeans package and used the hypothesis function from brms to obtain point 

estimates and 95% credible intervals (CI). Note that Bayesian CIs differ from confidence 

intervals (Hespanhol et al. 2019).  We performed scientific inference using the entire 

posterior distribution and calculated the probability of falling within the ROPE using the 

entire posterior.  

For conditional distribution estimates (rhohat), we plot the pooled (per group) mean 

(magenta) with two-sigma confidence intervals (shaded gray region). In addition, we 
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plotted the pooled mean intensity (dashed cyan), and the lower (solid black) and upper 

(dotted green) limits of the two-sigma confidence intervals for the mean intensity. The 

scales of the plots were weighted or constrained for optimal visualization, depending on 

the available ranges for the computed function. For images of the MCA territory at 10x, 

we plotted L-functions with 95% confidence intervals (shaded gray area) and performed 

a studentized permutation test (Hahn 2012) using the studpermu.test function 

from spatstat. 

For TDA, we used Betti curves to represent the Betti numbers of the dataset against a 

parameter, such as a threshold or a scale. We analyzed the Betti curves using the non-

parametric two-sample Kolmogorov-Smirnov (KS) test to compare the cumulative 

distribution functions (CDFs). We also employed permutation tests to randomly permute 

the labels of the data points and compute the Betti curves for each permutation. We 

repeated this process many times to obtain a null distribution of the test statistic. 

 

Results 

We performed PPA and TDA on NeuN+ (neurons), GFAP+ (reactive astrocytes), and 

IBA1+ (activated microglia) to quantify the spatiotemporal and topological arrangement 

of glial scars after ischemic stroke. Our approach provides essential quantitative 

insights into the spatial intensity (the cell density fluctuations) and the relative 

distribution of glial cells (mapped by point patterns) with respect to different covariates. 

Furthermore, we demonstrate that TDA enables researchers to predict stages of injury 

and the distribution of different cell groups based on the allocation of single cell types. 

Raw data, data handling, statistical models, and model validation are available on-line 

for full reproducibility of our results. 
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Spatial intensity of neurons and glial cells following injury  

Ischemic stroke is associated with profound changes in the density of neurons and glial 

cells at the lesioned tissue over time  (Sofroniew and Vinters 2009). Therefore, we 

employed PPA to examine the variation of the spatial intensity of NeuN+, GFAP+, and 

IBA1+ cells during the course of injury.  Details of the raw data, model selection, and 

diagnostics are available (QN, Section 2 and Suppl. Table 4).  

The spatial intensity of NeuN+ cells showed a marked reduction of 17 units (95% CI = 

9.7 - 24.7) at 5 DPI (Figure 1C, top). No substantial changes were observed from this 

stage to 15 DPI (-1.64, 95% CI = -8.6 - 5.4, ROPE = 0.89). However, our results show 

that at 30 DPI, the spatial intensity of NeuN+ cells exhibits a partial recovery of 7 units 

(95% CI = 1.24 - 13.7, ROPE = 0.54). This output may be driven by increased neuronal 

density resulting from severe brain shrinkage or the partial recovery of NeuN 

immunoreactivity associated with the restauration of metabolism in the penumbra (Unal-

Cevik et al. 2004). Thus, the analysis of spatial intensity captures the complex variations 

in neuronal density associated with brain shrinkage and cell antigenicity. 

Using PPA, we observed that reactive astrocytes exhibited a peak in spatial intensity at 

15 DPI (31, 95% CI = 27.4 - 34.8), which is sustained at later time points (-3.4, 95% CI 

= -7.6 - 0.77, ROPE = 0.71) (Figure 1B-C, middle). This represents a 6-fold increase 

compared to the baseline (22.9, 95% CI = 18.3 - 27.6, ROPE = 0). Conversely, the 

spatial intensity of reactive microglia peaked at 5 DPI (31.9, 95% CI = 28.3 - 36.1) and 

progressively decreased until 30 DPI (10.5, 95% CI = 7.2 - 13.2) (Figure 1B-C, bottom). 

We note that those estimates are not directly comparable due to the differying 

expression of GFAP and IBA1. Furthermore, the negative correlation between the 

spatial intensity of glia and neurons (QN, Section 2; Suppl. Figure 2D) warrants analysis 

by PPA. 

Altogether, we show that quantifying the spatial intensity enables assessing the 

dynamic changes in cell populations in response to injury. This approach is compatible 

with classical estimations of interhemispheric cell ratios (QN, Section 3; Suppl. Figure 3; 
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Suppl. Table 5), showing similar trends during the injury course mainly in the CNU and 

CTX (QN, section 3; Suppl. Figure 3D). 

 

Figure 1. Spatial intensity of neurons, astrocytes, and microglia. A) Representative immunolabeling 

of NeuN (neurons), GFAP (astrocytes), and IBA1 (microglia) at 5 DPI. Brains are displayed using 

the thermal lookup table (FIJI) to facilitate the visualization of stained cells. B) Representative smoothed 

intensity kernels (density function [sigma = 0.3 (NeuN); sigma = 0.2 (GFAP, IBA1)], spatstat) for NeuN, 

IBA1, and GFAP at each day post-ischemia (DPI). Mean intensity estimates with 95% credible intervals 

(CI) are shown below each plot.  C) Composite graphs showing Bayesian posterior distributions of the 

spatial intensity for neurons (NeuN, top), astrocytes (GFAP, middle), and microglia (IBA1, bottom). Mean 

point estimates and their uncertainty are plotted as half-eye and point intervals (stat_halfeye 

and stat_interval functions, ggdist). Raw data (black dots) is accompanied by prediction intervals (Brewer 

scale). The contrast between time points of interest (emmeans function [contrast(method = “revpairwise” 

], emmeans) is displayed at the bottom of each composited graph. The region of practical equivalence 

(ROPE) encloses the values falling within intragroup variance and, therefore, considered equivalent to 
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null. Probability within the rope is calculated using the hypothesis function from brms. M# labels (unique 

animal ID) signal the individuals plotted in panels A.   

 

Reallocation of glial scar-forming cells following injury 

Brain injury involves the activation and reallocation of glial cells to form a 

scar (Manrique-Castano and ElAli 2021).  We investigated this cell redistribution by 

estimating the spatial intensity of reactive astrocytes and activated microglia as a 

function of the spatial intensity of neurons (QN, Section 4). We show that GFAP+ and 

IBA1+ cells progressively reallocate into regions of low neuronal spatial intensity, as 

shown by the higher peaks (rhohat) at < ~ 30-40 in Figure 2A. 

Interestingly, the mppm [L(u) = exp (3.1 + 0.002 ± DPI)] for astrocytes shows decreasing 

slopes from 0.01 at 5 DPI to -0.008 at 30 DPI for time-specific variations (group-level 

effects) (Suppl. Table 6). The preceding suggests a bimodal dynamic for reactive 

astrocytes.  First, these cells are likely to aggregate in high-intensity (extra-lesional) 

neuronal regions, shifting later their allocation probability towards low-intensity (intra-

lesional) neuronal regions. In contrast, the mppm for activated microglia [L(u) = exp (2.8 

+ 0.01 ± DPI)] yields negative slopes for all the time-specific variations (Suppl. Table 6). 

This indicates that IBA1+ cells are preferentially positioned in low-intensity (intra-

lesional) neuronal regions as the injury progresses.  

We also examined the reallocation of reactive glia in neuronal regions 

using tessellations (quantiles = 0, 20, 150) (QN, Section 5), representing intra-lesional 

(low spatial intensity) and extra-lesional (high spatial intensity) zones (Figure 2B,  Suppl. 

Table7 ). Control animals were excluded from this analysis, given the lack of reactive 

glia labeling in healthy brains.  
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Figure 2. Astrocyte and microglia allocation with respect to neurons. A) Conditional intensity 

distribution estimates (rhohat function, spatstat) for reactive astrocytes (top) and activated microglia 

(bottom) with respect to the spatial intensity (smoothed density kernel) of neurons. Data are presented as 

the estimated GFAP or IBA1 intensity (magenta, y-axis) with upper and lower two-sigma confidence 

intervals (shaded gray area) given the spatial intensity of neurons (x-axis). Horizontal lines represent the 

mean intensity (dashed line) and the lower (solid black) and upper (dashed green) limits of the two-sigma 

confidence intervals. Note the different scales, which are weighted by the available ranges of the 

computed function or constrained for optimal visualization. B) (Left, Tessellation) Representative images 

of tessellated neuronal smooth intensity kernels to segregate regions of low (cyan) and high (green) 

neuronal spatial intensity (quantiles = 0, 20, 150). The distributions of reactive astrocytes and activated 

microglia are shown as black dots. Corresponding cell counts in low (top) and high-intensity (bottom) 

cuadrants and corresponding 95% credible intervals are shown for each DPI. (Right, Influence) Influence 

(yellow = high, orange = low) of neuronal intensity on glial cell distribution (dfbetas function, spatstat). 
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These maps are generated from superimposed point patterns at each DPI. C) Contrast between time 

points for the posterior distributions of the number of reactive astrocytes and activated microglia in low- 

and high-intensity neuronal regions (emmeans function [contrast(method = “revpairwise” ], emmeans). 

The mean point estimates and their uncertainty are plotted as half-eye and point intervals (stat_halfeye 

and stat_interval functions, ggdist). The region of practical equivalence (ROPE) encloses the values 

falling within intragroup variance and, therefore, considered equivalent to null. Probability within the rope 

is calculated using the hypothesis function from brms.    

 

The results reveal that reactive astrocytes progressively populate low-intensity neuronal 

regions after the first week post-ischemia (15-5 DPI = 216, 95% CI = 54 - 372, ROPE = 

0.35) (Figure 2C, top). Yet, this model yields considerable uncertainty in the estimates, 

probably due to different infarct sizes and individual evolution of the injury (Suppl. Table 

7). Conversely, we predict a persistent distribution of reactive astrocytes in extra-

lesional regions throughout injury (Figure 2B-C, top), as implied previously by the mppm 

models. On the other hand, our model predicts that active microglia are increasingly 

confined to intra-lesional regions (Figure 3B-C, bottom). This entails a ~77% reduction 

in IBA1+ cells in high-intensity neuronal regions at 30 DPI (30-5 DPI = -370, 95% CI = -

485 - 249, ROPE = 0.005), as well as a reduction in intra-lesional areas (-379, 95% CI = 

-493 to -260, ROPE = 0.007). This is congruent with the resolution of the inflammatory 

response. We also found that intra-lesional regions strongly influence glial distribution in 

the striatum at the level of the MCA territory (Figure 3B; QN, Section 5.8). Notably, the 

injured area shapes an exclusion zone for GFAP+ cells at 5 DPI.  

These results highlight the potential of the relative distribution (rhohat) and cell 

covariance (tessellations, quadrant counts) estimates to elucidate the complex 

interactions and spatiotemporal dynamics of different cell types in response to brain 

injury. This approach can quantitatively characterize the positioning over time of 

reactive astrocytes and activated microglia relative to neuronal intensity or other spatial 

features of interest, allowing the modeling of treatments aiming at modulating glial scar 

properties.  
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Astrocytes and microglia form a two-layered glial scar 

Next, we examined the interaction between reactive astrocytes and activated microglia 

at the interface of the glial scar (QN, Section 6). First, we calculated the relative 

distribution of glial cells with respect to the X-axis (Figure 3A). The graphical results 

show that reactive astrocytes display a maximum likelihood over the average in extra-

lesional areas at 5 DPI. At this stage, we observed a ~ 2 mm ring of reactive cells 

around the injury zone, heavily populated by activated microglia  (Figure 3B).  This ring 

is narrowed to ~ 500 µm at 15 DPI, when the mass of reactive astrocytes advances ~ 

200 µm towards the dorsal cortex (Figure 3A). In the later stage, the spatial intensity of 

reactive astrocytes is prominent in intra-lesional regions between -5  and -3 x-

coordinates. Accordingly, the mppm [L(u) = exp (3.2 + 0.007 ± DPI)] (QN, Section 

6.1) yielded positive slopes at 15 DPI [exp(0.02)] and 30 DPI [exp (0.17)]  ( Suppl. Table 

8).    

On the other hand, activated microglia show a consistent maximum likelihood in intra-

lesional areas (~ -4 - -2 x-coordinates) at all time points (Figure 3A). Besides, 

the mppm shows [L(u) = exp (4.1 + 0.22 ± DPI)] increasing slopes from exp(- 0.10) at 

5DPI to exp (0.15) at 30 DPI  (Suppl. Table 8), denoting a progressive centering of the 

cell mass in intra-lesional regions as shown in  Suppl. Figure 4A.  The preceding pattern 

is consistent with the resolution of inflammatory cascades and might imply that 

astrocytes “sweep” immune cells into intra-lesional areas.   

Next, the analysis of GFAP/IBA1 covariance by mppm (QN, section 6.3, Suppl. Table 

9) suggests a negative correlation (slope, -0.002) that decreases over the injury course 

(15 DPI = 0.01; 30 DPI = 0.02). This is consistent with the formation of two layers of 

reactive glial cells that intermingle progressively.  Alternatively, analysis using 

tessellated smoothed density kernels of activated microglia (Figure 3C-D)  indicates that 

reactive astrocytes allocation progressively increases in low-intensity microglial regions 

by ~220% from 5 DPI to 30DPI (255, 95% CI = 139-373, ROPE = 0.15) ( Suppl. Table 

10). Moreover, influence plots (Figure 3C) show that from the second week after injury, 

astrocyte allocation is strongly influenced by low-density microglial regions, mainly in 

the cortex.   
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Figure 3. Structuration of a layered glial scar .  A) Conditional intensity distribution for reactive 

astrocytes (GFAP+) and activated microglia (IBA1+) with respect to the x-coordinates of the ischemic 

hemisphere (rhohat function, spatstat). Data are presented as the estimated GFAP or IBA1 spatial 

intensity (magenta) with upper and lower two-sigma confidence intervals (shaded gray area). Horizontal 

lines represent the pooled mean intensity (dashed line) and the lower (solid black) and upper (dashed 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560910doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560910
http://creativecommons.org/licenses/by/4.0/


green) limits of the two-sigma confidence intervals.  B) Perspective plots (persp function, graphics) of 

superimposed brains showing the spatial intensity of reactive astrocytes (256 topo colors) and activated 

microglia (white dots). Reactive astrocytes form a ring that progressively encloses activated microglia in 

intra-lesional regions. C) (Left Tessellation) Representative images of tessellated smooth intensity kernels 

to segregate regions of low (cyan) and high (green) microglia spatial intensity (quantiles = 0, 20, 150). 

Astrocytes are displayed as black dots. Corresponding cell counts in low (top) and high (bottom) intensity 

quadrants for each DPI are shown with 95% credible intervals below each plot. (Right, Influence) 

Estimated influence (yellow = high, orange = low) of activated microglia on reactive astrocyte distribution  

(dfbetas function, spatstat). These maps are generated from superimposed point patterns at each DPI. 

 D)  Contrast between time points for the posterior distributions of the number of reactive astrocytes in 

low- and high-intensity microglial regions (emmeans function [contrast(method = “revpairwise” 

], emmeans). The mean point estimates and their uncertainty are plotted as half-eye and point intervals 

(stat_halfeye and stat_interval functions, ggdist). The region of practical equivalence (ROPE) encloses 

the values falling within intragroup variance and, therefore, considered equivalent to null. Probability 

within the rope is calculated using the hypothesis function from brms. E) Raster layers 

(raster function, raster) for reactive astrocytes (terra colors) in superimposed brains. The green color 

depicts the regions with high cell clustering. Dots and circles depict the centroid and standard deviation 

for reactive astrocytes (blue) and activated microglia (red). Numerical summaries are displayed in each 

image with the same color code for both cell types. F) Distance between the centroids of high-density 

raster layers of reactive astrocytes (blue) and activated microglia (red) (5 DPI = 1.47; 15 DPI = 0.73; 30 

DPI = 0.7). G) Correlation between the point patterns’ standard deviation of reactive astrocytes and 

activated microglia. Comparable intercepts and slopes (5 DPI, red; 15 DPI, green; 30 DPI, blue) are 

displayed in the graph. The regression shows a low explained variance (R2 = 0.28, 95% CI = 0.05, 0.47).  

 

Taken together, these data support a model where GFAP+ and IBA1+ cells intermingle 

progressively during the injury course. Still, astrocyte allocation is prominent in low-

intensity microglial areas, consistent with a compartmentalized glial scar with reactive 

astrocytes (in extra-lesional regions) enclosing activated microglia in an inner layer (in 

intra-lesional regions).                   

To further investigate the dynamics of the two glial layers, we analyzed the distance 

between the centroids of GFAP+ and IBA1+ cell masses (QN, Section 7). Raw data plots 

are shown in Suppl. Figure 4B-C. The results show a minimum distance between 

centroids at 15 DPI (600 μm) (15 - 5 DPI = -0.53, 95% CI = -0.93 to -0.13, ROPE = 

0.35) and sustained thereafter (Suppl. Figure 4D). Yet, the astrocyte cell mass shifts its 
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allocation at 30 DPI, as seen in Figure 3E (mean) and Suppl. Figure 4B (single 

brains). Furthermore, analysis of cell dispersion (QN, Section 7) reveals the higher 

clustering for reactive astrocytes at 30 DPI and for reactive microglia at 5 DPI (Suppl. 

Figure 4E). Remarkably, the uncertainty of astrocyte clustering increases as microglial 

cells disperse (Figure 3G).  

The calculation of relative distributions uncovered the progressive mixing of reactive 

astrocytes and activated microglia at the glial scar. Our results show that reactive 

astrocytes enclose activated microglia from the second week after injury, and that the 

microglial distribution in extra-lesional regions strongly influences the boundaries of the 

reactive astrocyte layer. In addition, raster layers allow an accurate estimation of the 

dynamics of highly clustered cells that form the glial scar walls.  

 

Glial scar arrangement in intra-lesional regions 

To gain further insights into the structure of the glial scar, we expanded our analysis to 

intra-lesional regions (QN, Section 8). We defined rectangular ROIs that cover the MCA 

territory from the ventricular zone to the outer edge of the cerebral cortex (Suppl. Figure 

1), and conducted a nonparametric estimation of the conditional distribution of reactive 

astrocytes with respect to the distance to activated microglia.    

The analysis indicates that the spatial intensity of reactive astrocytes is sustained within 

~30 µm of the nearest microglia up to 15 DPI (Figure 4A). However, the peak at > 30 

µm at 30 DPI suggests a more distant allocation at this stage. Accordingly, 

the mppm (Suppl. Table 11) yields a higher reactive astrocyte allocation the more 

distance to activated microglia as the injury progresses [15 DPI =  exp(-2.7); 30 DPI = 

exp(-23.5)]. The preceding suggests a meaningful decoupling of reactive astrocytes and 

activated microglia when the latter are constrained to intra-lesional regions.   
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Figure 4. Glial scar in intra-lesional regions A) Conditional intensity distribution (rhohat 

function, spatstat) for reactive astrocytes with respect to the distance to nearest activated microglia 

(distfun function, spatstat). Data are presented as the estimated GFAP+ cells spatial intensity (magenta) 

with upper and lower two-sigma confidence intervals (shaded gray area). Horizontal lines represent the 

pooled mean intensity (dashed line) and the lower (solid black) and upper (dashed green) limits of the 

two-sigma confidence intervals. B)  (first row) Representative images of GFAP (green)/IBA1 (red) staining 

in intra-lesional regions. (second row) distance maps  (distfun function, spatstat) of activated microglia in 

the same region (256 topo colors). Green and yellow zones depict the areas where the distance between 

activated microglia (low spatial intensity) is more extensive. Reactive astrocytes are represented as white 

dots. (third and fourth rows) Stienen maps/diagrams (stienen function, spatstat) of GFAP+ and IBA1+ 

reactive glia depicting circles around each data point with a diameter corresponding to the distance to the 

nearest neighbor. C) Inhomogeneous L-function (Linhom function, spatstat) to estimate long-scale 

cumulative distributions of reactive astrocytes and activated microglia. The dashed red line is centered at 

0 and corresponds to a regular point pattern. Over and below the line signal clustering and inhibition 

(independent), respectively.  The estimates are based on Ripley’s isotropic correction (black line) with 

upper and lower limits of two-sigma CI (shadowed region). D-E) Conditional spatial intensity distribution 

for reactive astrocytes and active microglia with respect to the x-axis of indicated ROIs (rhohat 

function, spatstat), and neuronal spatial intensity in intra-lesional regions, respectively. Data are 

presented as the estimated GFAP+ cells spatial intensity (magenta) with upper and lower two-sigma 

confidence intervals (shaded gray area). Horizontal lines represent the pooled mean intensity (dashed 

line) and the lower (solid black) and upper (dashed green) limits of the two-sigma confidence intervals. F) 

Representative images of GFAP (green)/ NeuN (red) (first row) and IBA1 (green)/ NeuN (red) (second 

row) staining in intra-lesional regions demarking the allocation of glial cells with respect to neurons. (Third 

row) Distance function estimate (distfun function, spatstat) for neurons in intra-lesional areas. Green and 

yellow zones depict the areas where the distance between neurons (low spatial instensity) is larger.          

       

We also analyzed the interaction within cells (QN, section 9). The results denote that, 

on the long scale, reactive astrocytes transition from an independent to a regular 

distribution, becoming more evenly spaced over time ( QN, section 9.1; Figure 4C, 

top).  In contrast, activated microglia are likely to maintain an independent distribution in 

the chronic phase of the injury and show less variability in their spatial distribution (QN, 

section 9.2; Figure 4C, bottom). Otherwise, on the short scale, activated microglia 

exhibit higher clustering than astrocytes at 15 DPI and display a more restricted 

behavior between ~20 and ~40 µm at 30 DPI (Figure 4C). This implies that the 
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distribution of reactive astrocytes is more dynamic than that of activated microglia, 

possibly because their allocation at the edges of the injured tissue. 

In addition, we analyzed the distribution of reactive astrocytes and activated microglia 

with respect to the x-coordinates of the ROI at 30 DPI. Our models indicate that reactive 

astrocytes are concentrated in the innermost part of the ischemic hemisphere [L(u) = exp 

(9.1 - 0.9) ], while activated microglia are located near the hemispheric boundary  [L(u) = 

exp (8.4 - 0.3)] (Figure 4D). In the MCA territory, both cell types are prominently 

positioned in areas with low neuronal intensity (QN, Section 8.3; see Figure 4E). These 

findings support the notion of a compartmentalized glial scar in which the outer layer of 

reactive astrocytes pushes tissue debris full of activated microglia to the borders of the 

brain.  

 

TDA supports the spatiotemporal dynamics of reactive glia observed in PPA 

TDA revealed a correlation in the density of reactive astrocytes and neurons (p < 0.001) 

during the first two weeks post-ischemia. Conversely, TDA tracked a shift of activated 

microglia from even distribution in control conditions to clustering in specific (intra-

lesional) regions after injury (p < 0.01). Interestingly, the distribution of activated 

microglia appears to be correlated with the high-density neuronal regions where 

reactive astrocytes initially aggregated. Analysis of Betti curves obtained from TDA of 

NeuN+, GFAP+, and IBA1+ cells positions and pairwise combinations of cell types 

revealed that reactive astrocytes and activated microglia are present in regions of low 

neuronal density (Figure 5A).  

 

TDA predicts DPI using the position of single-cell types 

We used a topological machine learning-based approach to predict DPI based on cell 

positions. We first applied persistent homology analysis to the point clouds to obtain 

topological features of the data. Subsequently, we predicted DPI using SVR with RBF 

kernel.  The results show that this approach can accurately predict DPI based on the 

positions (point clouds) of neurons, reactive astrocytes, and activated microglia, with a 
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mean absolute error (MAE) of 0.84 days and a root mean squared error (RMSE) of 1.16 

days (Suppl. Table 12). 

 

 

Figure 5. Recovery of DPI and cell type from topological features. A) Confusion matrix for the 

prediction of days post-injury with an overall accuracy of 77.8% using dimension 0 and dimension 1 

topological features. B) Confusion matrix for the prediction of cell type with 100% accuracy using 

dimension 0 and dimension 1 topological features. C) Betti curves are clustered by mouse 

identity. D) Principal component analysis of Betti curves reveals clustering by mouse identity. Jitter added 

to plot for visual clarity. Embedding distance between cell types over time reveals co-occurrence of 

astrocytes (Gfap) and neurons (NeuN) during the first 5-15 days before shifting to low neuronal density 

regions at 30 DPI.  
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To further validate the effectiveness of this model, we compared it with two baseline 

methods: a linear regression model and a neural network model with two hidden layers. 

The linear regression model achieved a higher MAE of 1.58 days and a higher RMSE of 

2.05 days, while the neural network model achieved a similar MAE of 0.88 days but a 

higher RMSE of 1.39 days (Suppl. Table 13). The preceding denotes that our 

topological machine learning model outperforms the baseline methods regarding 

prediction accuracy. 

We also performed a feature importance analysis to identify the most informative 

features for predicting DPI. Our analysis revealed that the positions of activated 

microglia were the most informative features, followed by the positions of neurons and 

reactive astrocytes (Suppl. Table 14).  

Overall, our results demonstrate the effectiveness of our topological machine learning-

based approach for predicting the post-ischemia time point using point cloud data of 

neurons, astrocytes, and microglia positions. This allows the use of the topological 

features of glial cell distribution to inform about injury progression in CNS diseases. 

 

Discussion 

Traditional methods to characterize the heterogeneous response of glia, based on cell 

counting or quantification of glial markers stained area (Anderson et al. 2016; Okada et 

al. 2006; Buscemi et al. 2019), do not fully capture the complex dynamics of glial scars. 

In this study, we developed PPA/TDA-based approaches to investigate the structure 

and spatiotemporal arrangement of glial scars in the mouse brain following injury.  With 

this approximation, researchers can uncover distribution patterns of reactive glia at 

different scales. The use of the rhohat and ppm frameworks from the spatstat R-

package enables the assessment of the spatial distribution of reactive astrocytes and 

activated microglia, taking into consideration cell-to-cell interactions and the 

heterogeneity of the spatial process (Spatial Point Patterns: Methodology and 
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Applications with R 2015). To our knowledge, the use point pattern-based approaches 

in biomedicine is restricted to cancer biology (Maisel et al. 2022; Kaufmann et al. 2021). 

Numerous approaches exist that demonstrate the impact of microglia (Zhang et al. 

2023; Bellver-Landete et al. 2019; Fu et al. 2020), astrocytes (Anderson et al. 2016; Gu 

et al. 2019; Herrmann et al. 2008), or NG2 (Rodriguez et al. 2014; Hesp et al. 2017) 

dysregulation/ablation in scar formation and their subsequent effects on neurological 

recovery. The assessment of these and other therapeutic approaches could benefit 

from analyzing the fine traits of cell reallocation, covariance, and interaction. Indeed, 

PPA or TDA-based approaches can benefit the assessment of cell or protein distribution 

in other CNS diseases such as Alzheimer’s (Spangenberg et al. 2019; Al-Onaizi et al. 

2022), Huntington’s (Crapser et al. 2019), or Parkinson’s disease (Sekiya et al. 2022). 

 (Wanner et al. 2013)  demonstrated that glial scar borders are constituted by 

proliferating astrocytes, which serve to contain fibrotic and inflammatory cells. However, 

their findings do not incorporate a quantitative model that facilitates predictions 

regarding cellular covariance or temporal evolution—capabilities inherent to our 

approach. Our model elucidates the distribution patterns of reactive astrocytes and 

activated microglia, thereby enabling the exploration of alternative hypotheses regarding 

fibrotic scar deposition (Fernández-Klett and Priller 2014). Although astrocytes are 

commonly believed to be primary contributors to the formation of fibrotic scar through 

the production of extracellular matrix (ECM) proteins like tenascin-C (TnC) (Dzyubenko 

et al. 2018; Dzyubenko et al. 2022), their predominant localization in regions outside the 

lesion suggests a potential key role for other cell types. Specifically, pericytes/PDGFR-

β+ cells might play a central role in this process, as indicated by other studies (Dias et 

al. 2021; Soderblom et al. 2013; Göritz et al. 2011) . 

Recently, TDA analysis has gained attention in oncology as a tool to determine cell 

architecture, disease classification, computer-aided diagnosis, prediction of treatment 

response (Bukkuri, Andor, and Darcy 2021; Singh et al. 2023), or to explore the gene 

regulatory network (Masoomy et al. 2021). Also, TDA has been used to quantify cell-to-

cell interactions (Bhaskar, Zhang, and Wong 2021), track their collective 

motions (Bonilla, Carpio, and Trenado 2020), or feature emerging traits in cell 
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dynamics (Dawson et al. 2022). In neurobiology, TDA applications are limited to 

EGG (Yamanashi et al. 2021) or fMRI analysis (Saggar et al. 2022) for the analysis of 

brain networks (Das, Anand, and Chung 2023). Here, we show the first application of 

TDA to analyze the topological arrangement of nervous cells (point clouds) extracted 

from widefield microscopy images. This entails a step towards an unbiased and 

reproducible analysis of cell distribution in fixed brain tissue, which can be extrapolated 

to other body organs.  

Automated/unbiased PPA for analyzing glial scars or cell redistribution has some 

limitations. First, the accuracy of the initial cell detection (performed in QuPath) can be 

influenced by several factors, including immunolabeling efficiency, cell size, and cell 

overlapping. In particular, we faced difficulty segmenting individual GFAP+ and IBA1+ 

cells. Conversely, using nuclear markers like NeuN is advantageous for segmentation 

algorithms like watershed. Several algorithms are suitable for segmenting quasi-circular 

or oval cells (Al-Kofahi et al. 2018; Greenwald et al. 2021; Stringer et al. 2020). 

However, the segmentation of highly branched and overlapping cells such as reactive 

astrocytes and activated microglia is a challenge not yet addressed. Secondly, the 

estimation of spatial intensity depends on the size and shape of the observation 

window. The window size can influence the detection of clustering patterns and density 

calculation, so it should be chosen carefully. Third, interpreting ppm and mppm models 

requires careful consideration of the assumptions and parameters.  Unfortunately, there 

are still no tools in spatstat for mppm diagnostics or goodness-of-fit. For this reason, we 

complete our analysis with Bayesian models.  Furthermore, running ppm models to 

large datasets can be computationally intensive and time-consuming, which may limit its 

scalability for some applications involving many cells. Finally, the interpretation of 

spatial intensity maps can be influenced by choice of color scales and contour lines, 

which emphasize the importance of proper modeling.       

Our study shows that the limitations of 2D PPA for the study of reactive glia and scar 

formation in the CNS are surprassed by 3D TDA, which captures the full complexity of 

the 3D microenvironment in which cells interact and migrate. Still, TDA supported the 

results of PPA, indicating that astrocytes initially aggregate in high-density neuronal 
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regions during the first week post-injury, before shifting to low-density neuronal regions 

in the second week. 

TDA, particularly through the use of persistent homology, relies on the creation of 

simplicial complexes from the data. In the presence of noise, these complexes can 

capture spurious topological features that do not reflect the underlying geometry or 

structure of the data. This can lead to misinterpretations. Moreover, the scale at which 

the data is analyzed plays a crucial role; small-scale features might be missed, while 

large-scale features might overshadow more intricate details. Also, constructing 

simplicial complexes, computing homology groups, and tracking persistence across 

scales can be computationally demanding. As the size and dimensionality of the data 

increase, the computational cost associated with TDA can escalate rapidly. This can 

limit the real-time or on-the-fly applications of TDA for big datasets. To overcome these 

limitations, we used a sampling strategy to subset our data. 

On the other hand, Bayesian modeling with parameter estimation and uncertainty 

quantification offers several advantages of traditional hypothesis testing (Kruschke and 

Liddell 2018). This framework enables the direct tunning of model parameters and 

obtaining transparent contrast and effect sizes based on the full posterior distribution. 

We found the brms and emmeans R-packages fundamental to contrasts grouping 

variables of interest, and we promote its use for proper statistical inference based on 

estimation and uncertainty, which is particularly relevant for small sample sizes such as 

those typical of biomedicine. 

 In conclusion, our study has successfully applied PPA and TDA to investigate the 

spatial distribution and evolution of neurons, astrocytes, and microglia in the injured 

brain after ischemic stroke. Also, it demonstrated the power and versatility of machine 

learning techniques to predict days post-injury from cell positions with high accuracy. 

This result not only validates the robustness of TDA for analyzing complex biological 

data, but also highlights its potential for aiding in the development of novel diagnostic 

and therapeutic strategies for neurological disorders and injuries. Our findings 

contribute to a better understanding of the dynamic cellular interactions occurring in the 

brain following ischemic stroke and provide a foundation for future research. 
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